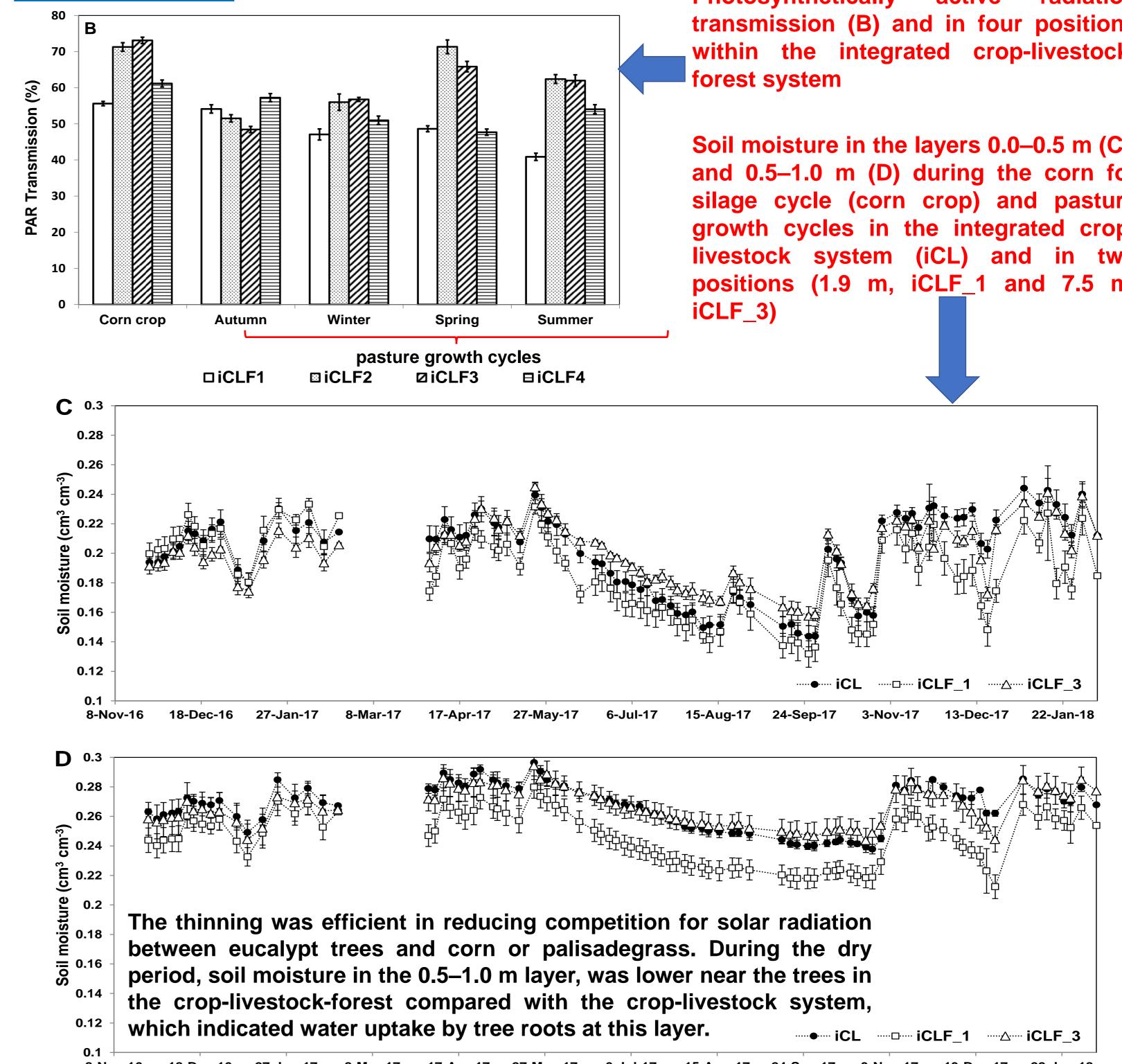
Reducing competition in crop-livestock-forest Embrapa integrated system by thinning eucalyptus trees


J.R.M. Pezzopane¹, W.L. Bonani², C. Bosi³, E.L.F. Rocha⁴, A.C.C. Bernardi¹, P.P.A. Oliveira¹, A.F. Pedroso¹

¹ Embrapa Pecuária Sudeste, Rod. Washington Luis, Km 334, 1356-3970, São Carlos, Brazil, ² UNIARA, Araraquara, Brazil, ³ USP, ESALQ, Piracicaba, Brazil, ⁴ UNICEP, São Carlos, Brazil; jose.pezzopane@embrapa.br

Introduction

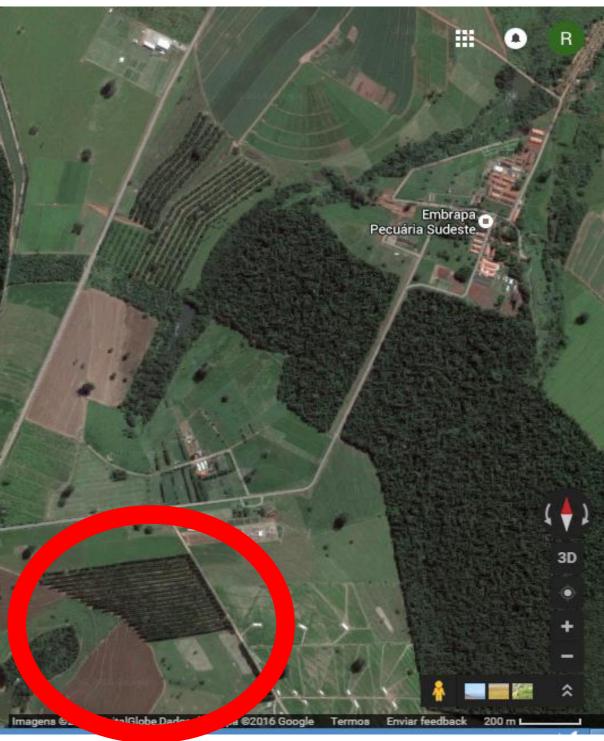
- ✓ Integrated livestock production systems (iCLFS), in which trees and crops are cultivated in rotation, succession or association with pastures, are alternatives for the sustainability of agriculture.
- \checkmark These systems present potential to mitigate GHG emissions by removing carbon from the atmosphere and storing it in biomass and in the soil.
- \checkmark Depending on the arrangement and population of trees, strong competition may occur between the plant species in these systems,

Results

Photosynthetically active radiation transmission (B) and in four positions within the integrated crop-livestock-

Soil moisture in the layers 0.0–0.5 m (C), and 0.5–1.0 m (D) during the corn for silage cycle (corn crop) and pasture growth cycles in the integrated croplivestock system (iCL) and in two positions (1.9 m, iCLF 1 and 7.5 m,

reducing yield of at least one of them. Trees thinning is considered a good management practice to reduce competition.


 \checkmark This study aimed to evaluate the effects of eucalyptus trees thinning on yield and nutritive value of corn for silage and palisadegrass (Urochloa brizantha cv. Piata) in a crop-livestock-forest integrated system.

Material and methods

The study was carried out at Embrapa Southeast Livestock - Sao Carlos – Sao Paulo State - Brazil

Evaluations: Assessments of plant variables (corn for silage and forage), as well as of photosynthetically active radiation (PAR) incidence and soil moisture were performed between October 2016 and March 2018 in a crop-livestock-forest and, for comparison, in a crop-livestock system.

Vegetative and productive characteristics of corn for silage in an integrated crop-

Integrated Crop-livestock-forest system: eucalyptus trees (*Eucalyptus urograndis* clone GG100) were planted in April 2011, in single rows, with a 15 x 2 m spacing. In 2016, trees were thinned and the spacing changed to 15 x 4 m.

March - 2016

July - 2016

livestock system (iCL) and four positions within an integrated crop-livestockforest system during the 2016/2017 crop

Position	Plant height	Ear insertion	Dry matter	Yield	Proportio n of grain	Crude protein	IVDMD ²
	ncigiti	height	content		n or grain	protein	
	cm	cm	%	Mg ha ⁻¹		%	%
iCL	263.80 C ¹	115.90 B	32.24 A	13.07 A	35.26 B	4.51 C	67.45 A
iCLF_1	277.25 BC	129.70 B	26.68 B	12.79 A	37.95 AB	7.29 AB	65.35 A
iCLF_2	296.68 AB	154.13 A	29.33 B	13.99 A	40.98 A	6.77 B	68.65 A
iCLF_3	300.20 AB	149.05 A	28.67 B	13.94 A	40.06 A	6.98 B	65.18 A
iCLF_4	301.28 A	150.05 A	28.35 B	14.07 A	41.33 A	7.87 A	65.00 A
Average	287.84	139.77	29.06	13.57	39.12	6.68	66.33
P value	0.0175	0.0009	0.0152	0.7595	0.0411	<.0001	0.7430

Productive characteristics of palisadegrass in an integrated crop-livestock system (iCL) and in four positions within an integrated crop-livestock-forest system

during four growth cycles

Position	Season				Season				
	Autumn	Winter	Spring	Summer	Autumn	Winter	Spring	Summer	
	Forage accumulation (kg ha ⁻¹ cycle ⁻¹)				Crude protein content (%)				
iCL	1874.0 A	391.3 A	2564.6 A	2134.4 A	10.8 B	5.9 B	8.1 B	9.5 A	
iCLF_1	1722.7 A	557.8 A	1884.1 A	1951.5 A	15.1 A	7.9 A	12.1 A	12.8 A	
iCLF_2	1651.2 A	552.0 A	1867.5 A	2057.7 A	15.5 A	8.0 A	11.8 A	11.9 A	
iCLF_3	1826.0 A	107.9 A	2808.7 A	2361.5 A	15.8 A	8.5 A	11.8 A	11.1 A	
iCLF_4	1958.5 A	266.3 A	2187.2 A	2156.7 A	14.6 A	8.7 A	12.3 A	11.2 A	
Average	1806.5	375.1	2262.4	2132.4	14.4	7.8	11.2	11.3	
P value	0.7325	0.5758	0.8487	0.9867	<.0001	0.0008	0.0049	0.5857	

iCLF – Grazing was performed by Yields of corn for silage and palisade grass were similar between the crop-livestock-forest

iCLF – Corn crop development

iCLF3

iCLF4

Nelore and Canchim (3/8 Nelore + 5/8 Charolais) bulls

and the crop-livestock system, which indicated that thinning maintained competition within a level that did not decrease understory plant yield. Additionally, the nutritive value of corn for silage and palisadegrass was higher in the crop-livestock-forest compared with the crop-livestock system.

Conclusions

✓ Such results indicate that tree thinning was favorable for production in the crop-livestock-forest system.

Acknowledgments

To São Paulo Research Foundation (FAPESP), which funded this study (grant 2016/02959-1) and granted scholarships to the second and third authors (grant 2016/14538-0 and 2014/11931-8, respectively). To Associação Rede ILPF, which funded this study. To National Council for Scientific and Technological Development (CNPq) for the research productivity fellowship granted to the first author.

iCLF – distance from North eucalyptus rows evaluated

iCLF2

iCLF1