

Evaluating inbreeding measures using a whole-genome sequenced cattle pedigree

S. Alemu, N.K. Kadri, C. Charlier and T. Druet* Unit of Animal Genomics, GIGA-R, University of Liège, Belgium

Introduction

- Inbreeding
 - Negative consequences such as increased occurrence of recessive genetic disorders and inbreeding depression
 - Considered in conservation programs
- Hypotheses for inbreeding depression (ID)
 - Increased homozygosity at rare recessive deleterious alleles
 - Decreased heterozygosity at variants presenting heterozygous advantage (overdominance)

Inbreeding coefficient F

- Estimation
 - Pedigree-based or genomic measures
- Numerous genomic estimates:
 - Maximum likelihood, method-of-moments, homozygosity or heterozygosity measures, diagonal elements of the GRM, ROH
- True inbreeding coefficients unknown:
 - Simple comparisons or simulations

Objectives

- Evaluation of inbreeding measures
 - In a livestock population
- Use whole-genome sequence data to mimic scenarios
 - Real genomic structure (LD, allele frequency spectrum, ...)
 - Contains causative variants, rare alleles, different functional categories
- Estimation and prediction
- Genome-wide and locus specific

Data

- 266 sequenced Dutch-Holstein cattle
 - Cover > 15x
 - 145 parents
 - 100 offspring with both parents known
 - 13 x 10⁶ SNPs
- Estimating of the inbreeding coefficient
 - 37,675 SNPs (50K array)
 - 5,977 SNPs (Low-density LD array)

Inbreeding coefficients

- Pedigree-based F_{PED}
- Correlations between uniting gametes F_{UG} (GCTA)
- Based on diagonal elements GRM F_{GRM}
- Excess homozygosity F_{HOM} (PLINK)
- Maximum likelihood estimator F_{LIK} (TrioML Coancestry)
- Homozygous-by-descent (HBD) segments (RZooRoH):
 - Four classes of HBD segments (length 20, 4, 0.8 and 0.2 cM)
 - Proportion of the genome in HBD classes with rate \leq T F_{HBD-T}
 - Similar to F_{ROH} with 50K

Scores related to inbreeding

- Obtained from the sequence data
- Homozygous mutation load
 - Homozygosity at rare and young alleles
- Homozygosity score at intermediate frequency variants
 - Homozygosity at variants with MAF > 0.15
- Whole genome sequence homozygosity
 - Homozygosity at all variants

Variant classification

- Age of alleles
 - Allele frequency (rare)
 - Derived allele (less SNPs)
 - Not in another breed (not in Belgian Blue): enrichment in young alleles
- Functional annotation
 - All alleles (no assumption)
 - Synonymous versus non-synonymous
 - Excluding intergenic and intronic regions (functional space)

Age of alleles

- Using GEVA (Albers and McVean, 2019):
 - Genealogical Estimation of Variant Age
 - Recombination clock (in generations to TMRCA)

Allele	All derived alleles		Alleles absent from the BBB sample	
frequency	Number of alleles	Average TMRCA	Number of alleles	Average TMRCA
≤ 0.05	20480	641	4633	386
≤ 0.15	23667	1237	2165	575
≤ 0.30	20687	1637	635	773
> 0.30	28111	2606	36	1799

Homozygous mutation load

• Rare recessive deleterious alleles

Homozygous mutation load

• Allele frequency < 15%

Homozygous mutation load

• Including derived alleles observed in BBB

• For different annotations categories

Heterozygous advantage

• Scenario 2: decreased heterozygosity

Whole genome sequence homozygosity

• Homozygosity at all alleles

Whole Genome Sequence Homozygosity

Using low-density array

- Modest decrease of correlations
- Same ranking with LD array
 - Across scenarios
- Methods still efficient with 6K

Predicting F

- Prediction of inbreeding coefficients
 - 100 sequenced trios
 - Use genotypes of parents to predict F
 - Compute scores with sequence of progeny
- Same trends across scenarios

Local trends

- Estimate scores in 1 Mb windows
 - Some filtering on number of markers, homozygotes
 - Huge variation
 - Average correlation

	Hom (< 0.15)	Hom (MAF > 0.15)	Hom WGS
F _{PED}	0.02	0.05	0.07
F _{UG}	0.45	0.72	0.67
F _{GRM}	0.43	0.57	0.44
F _{HBD}	0.38	0.73	0.75

Local trends – LD array

- Estimate scores in 1 Mb windows
 - Some filtering on number of markers, homozygotes
 - Huge variation
 - Average correlation

	Hom (< 0.15)	Hom (MAF > 0.15)	Hom WGS
F _{PED}	0.02	0.05	0.07
F _{UG}	0.24	0.48	0.43
F _{GRM}	0.25	0.40	0.32
F _{HBD}	0.35	0.60	0.62

Conclusions

- F_{UG} and F_{GRM} better for inbreeding depression
 - Focus on rare allele (and not young)
- F_{HBD}, F_{HOM} and F_{PED}: proportion genome IBD
 Improve with young alleles ("breed specific")
- Lower correlations with NS variants
 - And with homozygosity at rare variants
- For locus-specific estimation and low-density, F_{HBD} performed well

Acknowledgements

Unit of Animal Genomics

Setegn W. Alemu Naveen Kumar Kadri Chad Harland Carole Charlier Michel Georges

Funding fiss

European Research Council

Established by the European Commission

