

Genomic characterization of a subsample of the Mangalica population in Germany

S. Addo^{1,2}, J. Schäler¹, & D. Hinrichs¹

¹Department of Animal Breeding, University of Kassel, D-37213 Witzenhausen, Germany ²Institute of Animal Breeding and Husbandry, Kiel University, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany

> 70th Annual Meeting of the European Federation of Animal Science Ghent, Belgium, 26th - 30th August 2019 Session 01, Abstract number 32084, dhinrichs@agrar.uni-kassel.de

Introduction

Mangalica pigs in Germany

- No official Herd book and more or less no pedigree information
- Three different types of Mangalica pigs
 - Blond Mangalica pig
 - Red Mangalica pig
 - Swallow-Bellied-Mangalica pig
- German breeders assume that Blond-, Red-, and Swallow-Bellied-Magalica pigs are different breeds.

Introduction

Mangalica pigs in Germany

Number of breeders and animals

- Approximately 325 people
- Estimated number of animals around 650
- Compared to 2012 the number of animals and breeders has been doubled
- Confirmed number of animals
 - 80 Blond Mangalica pigs
 - 97 Red Mangalica pigs
 - 120 Swallow-Bellied-Mangalica pigs
 - 31 Crosses
- Almost all animals are kept by hobby breeders

(Swallow-Bellied-Mangalica pig)

Introduction

Aim of this study

 To investigate the potential of genomic information in the German Mangalica pig population

(Red-Mangalica pig)

(Blond-Mangalica pig)

Materials and methods

Data

57 Mangalica pigs genotyped with a 70k SNP Chip

Data before & after quality filtering

	Before	After				
Number of animals	57	50				
Number of SNPs	62,543	34,066				

Autosomal SNPs Individual call rate: > 90 % SNP call rate: > 90 % MAF: > 5 % HWE: $P \le 0.0001$

- 10 Blond Mangalica pigs
- 20 Red Mangalica pigs
- 18 Swallow-Bellied-Mangalica pigs
- 2 Crossbreed animals

Materials and methods

Computations (Genomic inbreeding)

- Runs of homozygosity (ROH) definition (McQuillan et al., 2008)
 - 50 SNP-window

- 1 het. SNP
- 2 missing genotypes —
- Density of 1 SNP per 100 kb _
- Maximum gap of 1000 kb _

 50 SNP-window 1 het. SNP 2 missing genotypes Density of 1 SNP per 100 kb Maximum gap of 1000 kb 		SNPs							
	Haplotype 1 Haplotype 2	С	A	A	СС	G T	G	A	A A
		ΤG	G	A	СС	G T	G	G A	ТС
						ROH			
 Chromosomal inbreeding were calcu for each chromosome 	lated separat	ely	y		∇t		1		

- Relative to autosome length ($F_{ROH KA}$)
- Relative to chromosome length ($\bar{F}_{ROH KK}$)

$$F_{ROH_KA} = \frac{\sum L_{ROH_K}}{L_{AUTO}}$$
 Relative to
autosomal length
$$F_{ROH_KK} = \frac{\sum L_{ROH_K}}{L_{AUTO_K}}$$
 Relative to
chromosomal length

Materials and methods

Computations (Relatedness and admixture)

- Population structure analysis in PLINK software (Purcell et al., 2007)
 - Multidimentional Scaling (MDS)
 - Admixture

Population structure (Relatedness)

- Two different clusters (Blond-Mangalica pigs and Swallow-Belly-Mangalica pigs
- No cluster for Red Mangalica pigs (only 5 individuals cluster together)
- Probably several animals assumed to be pure Red-Mangalica pigs are crossbreed animals

Population structure (Admixture)

- Admixture results showed that three different clusters (k) are optimal for the data (smallest cross-validation error)
- Confirm the MDS results (again only 5 Red-Mangalica pigs were not influenced by another cluster)

Genomic inbreeding $(F_{ROH_{KA}})$

Chromosomal inbreeding relative to autosomal length

- Inbreeding level varied across chromosomes
- Highest mean F Chr. 1, Chr. 6 & Chr. 14

Genomic inbreeding ($F_{ROH_{KA}}$)

Compared across breeds (autosomal length)

breed 🛑 Blond 🛑 Mixed 🛑 Red 🖨 Swallow Belly

Genomic inbreeding ($F_{ROH_{KK}}$)

Chromosomal inbreeding relative to chromosomal length

 Variation in inbreeding across chromosome captured better with
 F_{ROH_KK}

Genomic inbreeding ($F_{ROH_{KK}}$)

Compared across breeds (chromosomal length)

breed 🖶 Blond 🚔 Mixed 📫 Red 🚔 Swallow Belly

Conclusion

- DNA extraction from hair samples works unexpected well
- SNP information has the potential to be implemented in Mangalica pig breeding in Germany
- Breeders have to cover the costs for generating SNP information
- Results of this study must be confirmed with larger data sets and additional breeds

Thank you for your attention