

UNIKASSEL ÖKOLOGISCHE VERSITAT AGRAR WISSENSCHAFTEN

Genome-wide diversity and chromosomal inbreeding in German White-headed Mutton Sheep

S. Addo^{1,2}, D. Hinrichs², & G. Thaller¹

¹Institute of Animal Breeding and Husbandry, Kiel University, Hermann-Rodewald-Straße 6, 24118 Kiel ²Department of Animal Breeding, University of Kassel, D-37213 Witzenhausen, Germany

> 70th Annual Meeting of the European Federation of Animal Science Ghent, Belgium, 26th - 30th August 2019 Session 01, Abstract number 32134, uk069108@uni-kassel.de

Introduction

History & Importance of German White-headed Mutton (GWM)

- GWM was developed in the middle of 19th century
- Crosses between
 - Local marsh sheep & English breeds

e.g. Cotswold & Leicester Longwools

- Introduction of Texel (TXL) & Berrichone Du Cher (BDC)
- Mainly found in Schleswig-Holstein & Lower Saxony

Introduction

History & Importance of German White-headed Mutton (GWM)

- Some Characteristics

 Pooled and uniformly white
 Mature weight, female: 80 90 kg male: > 100 kg
 - Fleece weight > 4 kg
- Monitoring population (red list)
 - 2018 herdbook numbers
 - 1,704 ewes
 - 106 rams
- Most flock owners are hobby breeders

Introduction

Aims of study

- To quantify genome-wide diversity in GWM from the application of different runs of homozygosity (ROH) measures.
- To investigate historical relatedness of GWM to other breeds.

Data1

48 GWM individuals genotyped with Illumina Ovinesnp50 BeadChip

	Before	After
Number of animals	48	46
Number of SNPs	52,413	40,753

Autosomal SNPs Individual call rate: > 90% SNP call rate: > 90% MAF: > 5% HWE: $P \le 0.0001$

- 31/46 individuals had pedigree information
- Born between 2009 and 2015

Data2 (plus other breeds)

Breeds	Acronym	Number
Berrichone du Cher	BDC	19
German Texel	GTX	46
Border Leicester	BRL	48
New Zealand Romney	ROM	24
Spanish Merino (Andalusia)	SMA	7
Spanish Merino (Estremadura)	SME	13
Suffolk	SUF	19
East Friesian White	EFW	9
Mouton Charollais	CHL	24
Source: WIDDE, 2019		209

--indep 50 5 2 255 samples 16,852 SNPs

Computations

- ROH definition
 - 50 SNP-window
 - 1 het. SNP
 - 2 missing genotypes
 - Density of 1 SNP per 100 kb
 - Maximum gap of 1000 kb
 - ROH were detected in 2 ways:
 - For entire autosome to calculate an individual's total inbreeding coefficient
 - F_{ROH_L}
 - \circ F_{ROH_N}
 - For each chromosome to calculate an individual's chromosomal inbreeding
 - $\circ \quad \mathbf{F}_{\mathbf{ROH}_\mathbf{KK}}$
 - F_{ROH_KA}

	SNPs				
Haplotype 1 Haplotype 2	CAA	СС	G T	G A	A A
	TGA	СС	G T	G A	ΤC
			ROH		

Individual is homozygous across all sites

Computations

Following McQuillan et al., 2008

Total F_{ROH} was calculated in 2 ways:

(1) Based on the Length of ROH (Mb) as:

 $F_{ROH_L} = \frac{\sum L_{ROH}}{L_{AUTO}}$

(2) Based of **N**umber of SNPs in ROH as:

 $F_{ROH_N} = \frac{ROH_SNP}{N_SNP}$

Chromosomal F_{ROH} was based on the ROH lenght measure and calculated either

(3) Relative to specific **c**hromosome length as:

(4) Relative to entire **a**utosomal length

$$F_{ROH_KK} = \frac{\sum L_{ROH_K}}{L_{AUTO_K}}$$

$$F_{ROH_KA} = \frac{\sum L_{ROH_K}}{L_{AUTO}}$$

Other diversity parameters

Genetic diversity indices

- Pedigree-based inbreeding (F_{PED}) using ENDOG (Gutiérrez JP, Goyache F, 2005)
- Observed (H_o) & Expected (H_e) Heterozygosity using PLINK (Purcell S *et al.*, 2007)
- LD-based Effective Population Size (Ne_{LD}) using *SNeP* (Barbato *et al.,* 2015)

Population structure

- Multidimensional scaling (MDS) analysis
- Admixture analysis (Alexander et al, 2009)

Inbreeding approaches

The distribution of inbreeding coefficients from different computational approaches in GWM (n = 31)

Parameter	Mean (min - max) %
F _{ROH_L}	3.894 (1.070 – 13.243)
F _{ROH_N}	3.946 (1.121 – 13.305)
$\sum \mathbf{F}_{\mathbf{ROH}_{\mathbf{KA}}}$	3.894 (1.070 – 13.243)
ØF _{ROH_KK}	3.764 (0.441 – 14.532)
F _{PED}	2.936 (0.459 - 8.956)

Inbreeding approaches

Correlations between inbreeding estimates of different approaches

	F _{ROH_L}	F _{ROH_N}	F _{ROH_KA}	F _{ROH_КК}
F _{PED}	0.8179	0.8235	0.8179	0.7428
F _{ROH_L}	-	0.9995	1.0000	0.9674
F _{ROH_N}		-	0.99945	0.9678
F _{ROH_KA}			-	0.9674

Heterozygosity & Effective size

- High level of genetic diversity consistent with relatively low F level in GWM
- Ne estimate at the boarder of critical threshold

Parameter	Value		
H _e	0.38		
H _o	0.39		
Ne _{LD(5Gen)}	53		

Population structure (MDS)

- Close relationship between GWM and BDC
- Some degree of closeness with GTX
- Highlight the improvement of lamb quality

BDC: Berrichone du Cher, BRL: Border Leicester, CHL: Mouton Charollais, EFW: East Friesian White, GTX: German Texel, GWM: German White-headed Mutton, ROM: New Zealand Romney, SMA: Spanish Merino (Andalusia), SME: Spanish Merino (Estremadura), SUF: Suffolk

Population structure (Admixture)

CHA LEN

CON CHARME CH

Admixture results representing K values from 2 to 11, with K = 9 having the lowest cross validation error

GWM: German White-headed Mutton, **BDC**: Berrichone du Cher, **BRL:** Border Leicester, **CHL:** Mouton Charollais, **EFW**: East Friesian White, **GTX**: German Texel, **ROM**: New Zealand Romney, **SMA**: Spanish Merino (Andalusia), **SME**: Spanish Merino (Estremadura), **SUF**: Suffolk

Conclusion

- Use of the "number of SNPs in ROH" and "length of ROH" in the computation of inbreeding coefficient produce comparable results.
- Total inbreeding can be elegantly partitioned into values for specific chromosomes following appropriate measures.
- GWM is more closely related to BDC and GTX and still harbours genetics of English descent.
- Genetic diversity is high in GMW, however, the Ne estimate suggests the implementation of a close monitoring system.

