Parameter estimation in the ancestral regression with missing parental or grandparental genotypes

Rodolfo J. C. Cantet, Natalia S. Forneris

Departamento de Producción Animal,
Facultad de Agronomía Universidad de Buenos Aires; INPA-CONICET

Introduction

\square Animal model of Henderson-Quaas-Bulmer is a Data Generating Process with a Markovian and p.d. covariance matrix.
\square Cantet et al (2017) proposed an individual based model ("ancestral regression", AR) that is autoregressive (causal), Markovian and easy to fit, but no parameter estimation.
\square Model parameters (the individual's β_{S} and β_{D}) are identifiable only with information from a dense set of SNPs to estimate the sufficient statistics.
\square Bayesian estimators require the distribution of $\beta_{S} \& \beta_{D}$.

Goal: To present a Gibbs sampler for β_{S} and β_{D}.

Ancestral regression

$a_{\mathrm{x}}=0.5 a_{\mathrm{s}}+0.5 a_{\mathrm{D}}+\beta_{\mathrm{s}}\left(a_{\mathrm{SS}}-a_{\mathrm{DS}}\right)+\beta_{\mathrm{D}}\left(a_{\mathrm{SD}}-a_{\mathrm{DD}}\right)+\phi_{\mathrm{x}}$
$\beta_{\mathrm{S}}=\frac{\Sigma_{\mathrm{X}, \mathrm{PGP}}-\Sigma_{\mathrm{PCP}, \mathrm{R}} \Sigma_{\mathrm{R}}^{-1} \Sigma_{\mathrm{R}, \mathrm{PGP}}}{\Sigma_{\mathrm{PGP}}-\Sigma_{\mathrm{PGP}, \mathrm{R}} \Sigma_{\mathrm{R}}^{-1} \Sigma_{\mathrm{R}, \mathrm{PGP}}} \beta_{\mathrm{D}}=\frac{\Sigma_{\mathrm{X}, \mathrm{MGP}}-\Sigma_{\mathrm{MGP}, \mathrm{R}} \Sigma_{\mathrm{R}}^{-1} \Sigma_{\mathrm{R}, \mathrm{MGP}}}{\Sigma_{\mathrm{MGP}}-\Sigma_{\mathrm{MGP}, \mathrm{R}} \Sigma_{\mathrm{R}}^{-1} \Sigma_{\mathrm{R}, \mathrm{MGP}}}$
where the sufficient statistics are

$$
\Sigma_{\mathrm{x}, \mathrm{PGP}}=0.5\left(\Sigma_{\mathrm{x}, \mathrm{SS}}-\Sigma_{\mathrm{x}, \mathrm{DS}}\right) \quad \Sigma_{\mathrm{x}, \mathrm{MGP}}=0.5\left(\Sigma_{\mathrm{X}, \mathrm{SD}}-\Sigma_{\mathrm{x}, \mathrm{DD}}\right)
$$

with corresponding variances

$$
\Sigma_{\mathrm{PGP}}=0.25\left(\Sigma_{\mathrm{SS}}+\Sigma_{\mathrm{DS}}-\Sigma_{\mathrm{SSDS}}\right) \quad \Sigma_{\mathrm{MCP}}=0.25\left(\Sigma_{\mathrm{SD}}+\Sigma_{\mathrm{DD}}-\Sigma_{\mathrm{SD}, \mathrm{DD}}\right)
$$

Path coefficient view of the

Ancestral Regression and ssBLUP

Covariance matrix of BV under AR

$\boldsymbol{B}_{\mathrm{x}(i)}=\left[\begin{array}{llllll}0 \ldots \beta_{\mathrm{s}} & -\beta_{\mathrm{s}} & \ldots 0 \ldots \beta_{\mathrm{D}} & -\beta_{\mathrm{D}} & 0.5 & 0.5\end{array}\right]=>\boldsymbol{B}$

Autoregressive causal model

$$
\boldsymbol{a}=\boldsymbol{B} \boldsymbol{a}+\phi \Rightarrow \Sigma=(I-\boldsymbol{B})^{-1} \boldsymbol{D}\left(I-\boldsymbol{B}^{\prime}\right)^{-1}
$$

- The distribution of \boldsymbol{a} is MVN (proved elsewhere), such that Σ^{-1} from an autoregressive structure, follows an inverted Wishart, and the betas (in \boldsymbol{B}) are standard normal (Roverato, 2000).

Covariances between BV under AR

$A=$ Ancestor, $S=$ Sire,$S S=$ Sire of Sire , DS = Dam of Sire , $D=D a m, \quad S D=$ Sire of Dam, DD = Dam of Dam.

Covariance between an ancestor and X

$$
\Sigma_{\mathrm{A}, \mathrm{X}}=0.5\left(\Sigma_{\mathrm{A}, \mathrm{~S}}+\Sigma_{\mathrm{A}, \mathrm{D}}\right)+\beta_{\mathrm{S}}\left(\Sigma_{\mathrm{A}, \mathrm{SS}}-\Sigma_{\mathrm{A}, \mathrm{DS}}\right)+\beta_{\mathrm{D}}\left(\Sigma_{\mathrm{A}, \mathrm{SD}}-\Sigma_{\mathrm{A}, \mathrm{DD}}\right)
$$

Covariances between two animals, neither of whom is an ancestor of the other

$$
\left[\begin{array}{cc}
\Sigma_{\mathrm{A}} & \Sigma_{\mathrm{A}} \boldsymbol{B}_{\mathrm{Y}}^{\prime} \\
\boldsymbol{B}_{\mathrm{X}} \Sigma_{\mathrm{A}} & \boldsymbol{B}_{\mathrm{X}} \boldsymbol{\Sigma}_{\mathrm{A}} \boldsymbol{B}_{\mathrm{Y}}^{\prime}
\end{array}\right]
$$

Inbreeding under AR

$S=$ Sire,$\quad S S=$ Sire of Sire,$D S=$ Dam of Sire ,
$\mathrm{D}=\mathrm{Dam}, \quad \mathrm{SD}=$ Sire of $\mathrm{Dam}, \mathrm{DD}=\mathrm{Dam}$ of Dam.
$F_{\mathrm{x}(\mathrm{AR})}=$
$0.5\left[\sum_{\mathrm{S}, \mathrm{D}}+\beta_{\mathrm{S}}\left(\sum_{\mathrm{SS}, \mathrm{D}}-\Sigma_{\mathrm{DS}, \mathrm{D}}\right)+\beta_{\mathrm{D}}\left(\sum_{\mathrm{SD}, \mathrm{S}}-\Sigma_{\mathrm{DD}, \mathrm{S}}\right)\right.$
$\left.+\beta_{\mathrm{S}} \beta_{\mathrm{D}}\left(\Sigma_{\mathrm{SS}, \mathrm{SD}}-\Sigma_{\mathrm{SS}, \mathrm{DD}}-\Sigma_{\mathrm{DS}, \mathrm{SD}}+\Sigma_{\mathrm{DS}, \mathrm{DD}}\right)\right]$

Distribution of sufficient statistics and parameters

\square Jimener' Thesis: Simulation to obtain the empirical distribution. Pig and beef cattle genotypes to validate the distributions obtained.
$\square \operatorname{Cov}($ Grandparent, Individual) $=>$ Beta.
\square Sufficient statistics: $\Sigma_{X, \text { PGP }}$
$=\operatorname{Cov}($ Grandsire, $X)-\operatorname{Cov}($ Grand-dam, X) $=>$ Normal
$\beta_{\mathrm{S}}, \beta_{\mathrm{D}}=>$ Normal. $\quad F_{\mathrm{AR}}=>$ Exponential.

Estimating equations

$$
\boldsymbol{L} \boldsymbol{B}_{\mathrm{x}}^{\prime}=\boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{\mathrm{s}} \\
\beta_{\mathrm{D}}
\end{array}\right]
$$

$$
L^{\prime}=\left[\begin{array}{cc}
0.5 & 0 \\
-0.5 & 0 \\
0 & 0.5 \\
0 & -0.5 \\
0 & 0 \\
0 & 0
\end{array}\right] \quad \begin{aligned}
& \text { If all grandparents and } \\
& \text { parents are genotyped, betas } \\
& \text { are the solution of the } \\
& \text { system with 2 equations: }
\end{aligned}
$$

$\operatorname{Var}\left(\phi_{\mathrm{x}}\right)=\left[1+F_{\mathrm{x}(\Lambda \mathrm{R})}-\boldsymbol{L} \boldsymbol{B}_{\mathrm{x}} \boldsymbol{\Sigma}_{\wedge} \boldsymbol{B}_{\mathrm{x}}^{\prime} \boldsymbol{L}^{\prime}\right] \sigma_{\mathrm{A}}^{2}$

Gibbs sampling algorithm for $\beta_{S} \& \beta_{D}$

1) Estimation of IBD relationships (data) with an algorithm that accounts for a) Pedigree, b) Inbreeding, c) LD: Han \& Abney (2011, Genetic Epidemiology 35: 557-567).
2) Build up the reduced system:

$$
L \Sigma_{A} L^{\prime} \beta=L \Sigma_{A X}
$$

3) Sampling β_{S} and β_{D} from

$$
\beta_{t} \sim T N\left(\beta_{t-1},(0.25)^{2}\right), \quad \beta_{t} \in[-0.25,0.25]
$$

Algorithm of Foulley (2000, GSE 32:631-635).

IBD genomic relationships under AR for Sultán when dams are not genotyped

Missing data: work in progress

\square Patterns of missing data are variable, Most problematic: missing grand-dams, because $\operatorname{cov}(G r a n d-d a m, X$) is part of the sufficient statistics (SuSt). Fortunately, the SuSt are Normal.
\square Estimate the missing covariance using available genotypes from relatives no more than 2 meioses apart ($\boldsymbol{U}=$ Uncles, grand-uncles). \boldsymbol{U} are many in pigs, but not enough in cattle.
\square Collaterals (FS): $\Sigma_{\mathrm{FS}}=0.5+2\left(\beta_{\mathrm{SX}} \beta_{\mathrm{SY}}+\beta_{\mathrm{DX}} \beta_{\mathrm{DY}}\right)$
\square HMM to estimate missing covariances through IBD segment sharing with different SNP panels, or even a small number of microsatellites used for paternity.

