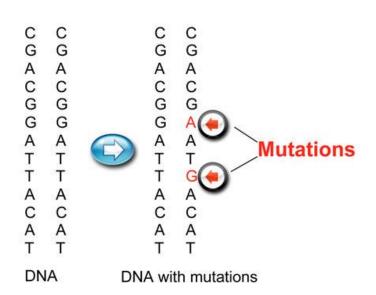

Genomic selection without own phenotypes exploits new mutational variance less than BLUP selection

Han Mulder, Sang Hong Lee, Sam Clark, Ben Hayes and Julius van der Werf

Acknowledgements

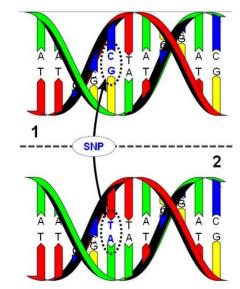
WUR-ABG supporting my sabbatical, February – March 2017

Prof. Julius van der Werf for hosting me at University of New England



Magnitude of mutational variance

- De novo mutation rate: $1.0 1.8 \times 10^{-8}$ per site per gamete
 - 20-80 per individual in humans
 - 1.1 \times 10⁻⁸ per site per gamete in cattle
 - 0.5 deleterious mutation per individual in cattle (Charlier et al. 2016)
- Some mutations have favourable effects
- Contribution to genetic variance: 0.001Ve
 - Houle (1996), Hill (1982)



Does genomic selection exploit mutational variance?

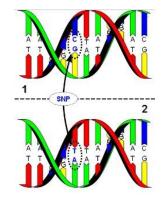
- Mutations are not on a SNP-chip
- Young mutations are in no LD with SNP on chip
- Mutations in selection candidate are not yet expressed if selection is at young age on GEBV before the phenotype is expressed
- Hardly any selection pressure on new mutations

Hypothesis and objectives

Hypothesis: genomic selection exploits new mutational variance less than traditional selection

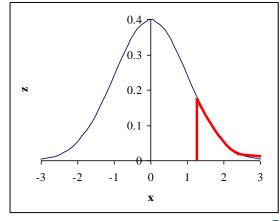
Aims:

- Investigate long-term selection response for mass, BLUP_OP, BLUP_no_OP, GBLUP_OP, GBLUP_no_OP selection
- Investigate development of standing genetic variance and mutational genetic variance

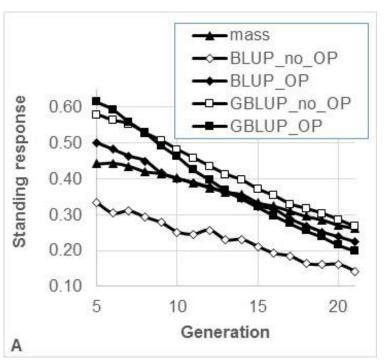


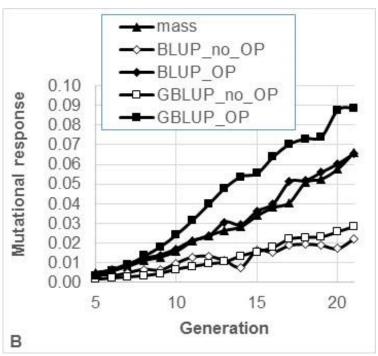
Simulation

- Sequence data Holstein bulls 1000 bull genomes project
 - Chromosomes 1, 2 and 3
 - 300,000 SNV used
 - 5000 QTL
 - 20,000 markers for chip
- 0.5 mutation/animal
- Vm=0.001Ve
- $h^2 = 0.3$
- QTL and mutations sampled from normal or gamma distribution

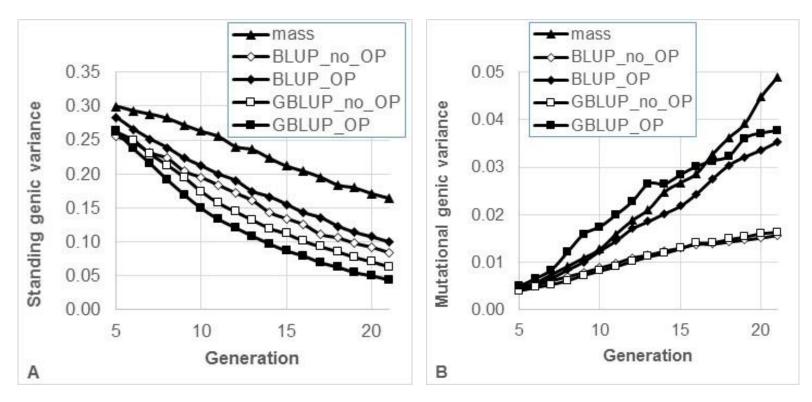


Selection strategies


- Each generation 1000 males and 1000 females
- 50 males to be selected
- 200 females to be selected; 10 offspring/female
- 20 generations of animals
- Parents are selected on
 - Own phenotype (mass selection)
 - Pedigree-BLUP EBV with or without own phenotype
 - GBLUP-EBV, with or without own phenotype



Standing and mutational selection response



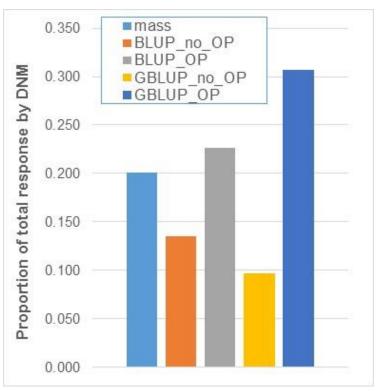
Genomic selection without own phenotype (and BLUP_no_OP) has lower mutational response than GBLUP_OP, mass and BLUP_OP selection

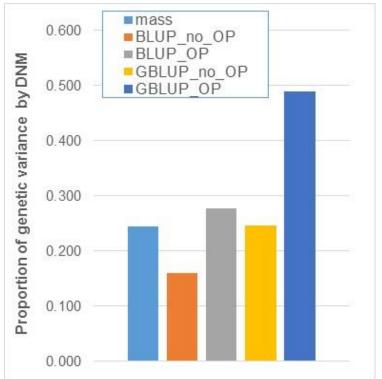
Standing and mutational genic variance

Genomic selection without own phenotype (and BLUP_no_OP) has lower mutational genic variance than GBLUP_OP, mass and BLUP_OP selection

The fate of DNM: DNM that segregate for 10 generations after appearance

	NQTL	N mut	N pos	N neg	prop pos
mass	3313	104.6	58.0	46.5	0.56
BLUP_no_OP	1602	55.6	28.6	27.0	0.51
BLUP_OP	2357	67.7	36.8	30.9	0.54
GBLUP_no_OP	2268	82.4	42.7	39.7	0.52
GBLUP_OP	2296	81.4	55.2	26.2	0.68


Very few DNM survive!

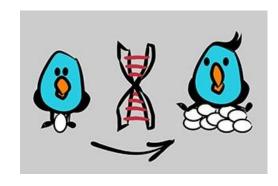


Can the contribution of DNM be ignored?

Proportions in generation 21 after 20 generations of truncation selection

Mutational variation accounts for 10-30% of response and 15-50% of genetic variance!

Take-home message


- GBLUP_OP is best in exploiting mutational variance
- Genomic selection without own phenotype exploits mutational variance less than traditional selection using own phenotype
 - Crucial factor is the role of the own phenotype
- Faster decline in total genetic variance with genomic selection than with BLUP, no mutation-selection-drift equilibrium
- Need for sustainable genomic selection strategies

Free online courses (MOOCs) in Animal Breeding and Genetics

ABG01x:
Genetic Models in
Animal Breeding

ABG02x: Evaluating Animal Breeding Programmes

- Now open for registration
- New runs starting every 4 months
- www.edx.org >> search "Wageningen"

Since first run 2017:

- 10k learners
- High ratings (81%)

SIXTH INTERNATIONAL **CONFERENCE OF QUANTITATIVE GENETICS** 14-19 June 2020 · Brisbane, Australia

Registration now open Abstract submission now open Abstract submission closes October 4 2019

icqg6.org

International Congress of **Quantitative Genetics Brisbane June 2020**

Including pre-conference student/postdoc workshops

Nick Barton - OG Theory

Ed Buckler - OG in Maize and Other Crops

Anne Charmantier - OG in Wild

Drosophila as a model

Steve McCarroll - QG in Single Theo Meuwissen - OG theory in Neurones and Organoids livestock and crops

Han Mulder - QG of GxE Interaction

Yaniv Erlich - QG in Crowd-Sourced Data

Daniel Gaffney - QG in Human Induced Pluripotent Stem Cells

Lucia Galvão de Albuquerque -QG in Tropical Cattle

Jarrod Hadfield - QG theory and applications in wild

Jessica Rutkoski - OG in Rice

Matthew Stephens - Statistics in QC

Barbara Stranger - OG of Gene Expression

Interface with Biology

David Houle - OG of the Genotype-Phenotype Man

Satish Kumar - OG in Horticulture

Evolutionary Biology

Albert Tenesa - OG in Human Big Data

Evolutionary Biology

Population and Forensic QG

methods for QG

Take-home message

- GBLUP_OP is best in exploiting mutational variance
- Genomic selection without own phenotype exploits mutational variance less than traditional selection using own phenotype
 - Crucial factor is the role of the own phenotype
- Faster decline in total genetic variance with genomic selection than with BLUP, no mutation-selection-drift equilibrium
- Need for sustainable genomic selection strategies

Sensitivity analysis

- Mutational variance per generation has large impact: 0.001 versus 0.004Ve
- Number of DNM per individual has large impact: 0.5 versus 2 DNM
- Distribution of mutational effects has large effect: mutational response/variance smaller with normal distribution
- Epistasis and dominance have minor effects on mutational response/variance

