

Automatic monitoring of sheep pasture behaviour using motion sensor data

Institute for Agricultural Engineering and Animal Husbandry J. Maxa and S. Thurner

70th EAAP Annual Meeting, Ghent, 26th - 30th August 2019

Introduction: Modern technologies & alpine farming

- Application of modern technologies in agriculture
 - GPS technology already established especially for crop production (e.g. telematics)
 - GPS and other motion sensors not yet fully established for livestock on pasture

- Application of modern technologies to optimize the farm management in alpine regions and to reduce workload
 - **Test of a tracking system for alpine areas**
 - Development of decision-support software tools
 - → Identification of sheep behaviour on pastures based on motion sensor data

Materials and methods

Prototype of the tracking system

4 GPS satellite signals for animal tracking

Data transmission to web database via GSM, GPRS Online configuration and control of animals

Identification of sheep behaviour

Data collection:

- Tracking collars → 3-axis accelerometer and magnetometer (10 Hz) data from 5 ewes (German Black-headed Mutton Sheep)
- Paddock in Upper Bavaria, Germany
- Visual observations → continuous video sampling; up to 8 hours/day; 4 days
- 7 behavioural activities recorded: walking, running, grazing, ruminating, standing, lying and social behaviour

Data analysis and algorithm development:

- 4 behavioural activities analysed: walking, grazing, standing and lying
- Log-transformed accelerometer and magnetometer data (x, y, z-axes) used for analysis
- Sensor data merged with behaviours into 10-s intervals
 > calculation of mean and SD (according to González et al., 2015)
- Selection of variables with significant effect on behaviour based on mixed effects regression analysis using Bonferroni correction
- Fitting of probability density function (PDF) to data with mixture distributions to obtain threshold values (R, mixdist package)

Results: Selection of variables

Differences among behaviours based on accelerometer data (10-s means and SD)

	Walking	Grazing	Standing	Lying
X - mean	11.39 ^a	11.28 ^a	11.52 ^a	11.65 ^a
Y - mean	9.44 ^a	9.66 ^a	9.42 ^a	9.01 ^a
Z - mean	11.93 ^a	11.99 ^a	12.01 ^a	11.82 ^a

Results: Selection of variables

Differences among behaviours based on magnetometer data (10-s means and SD)

	Walking	Grazing	Standing	Lying
X - mean	6.73 ^a	7.67 ^b	5.03 ^c	4.77 ^c
Y - mean	6.55 ^a	7. 44 ^b	4.70 ^c	4.52 ^c
Z - mean	6.65 ^a	7.36 ^b	4.91 ^c	4.56 ^c

Results: Selection of variables

Differences among behaviours based on magnetometer data (10-s means and SD)

	Walking	Grazing	Standing	Lying
X - mean	6.73 ^a	7.67 ^b	5.03 ^c	4.77 ^c
Y - mean	6.55 ^a	7.44 ^b	4.70 ^c	4.52 ^c
Z - mean	6.65 ^a	7.36 ^b	4.91 ^c	4.56 °
X - SD	6.57 ^a	7.52 ^b	4.90 ^c	4.53 ^c
Y - SD	6.46 ^a	7.33 ^b	4.55 ^c	4.05°
Z - SD	6.36 ^a	6. 5 ^a	4.71 ^b	4.24 ^b

Y-axis (SD) and vector-magnitude of X, Y, Z-axes of magnetometer

included for further analyses

Results: Algorithm development

Distribution of Y-axis magnetometer data (10-s SD) per observed behaviour

Results: Algorithm development

Distribution of vector-magnitude of XYZ-axis magnetometer data (10-s SD) per observed behaviour

Results: Algorithm development

Distribution of Y-axis magnetometer data (10-s SD) across all behaviours

Results: Evaluation

Performance measures of classification algorithm

	Low activity Lying / Standing	High activity Grazing / Walking	
Sensitivity (%)	94.3	96.1	
Specificity (%)	96.1	94.3	
Accuracy (%)	95.7		

Conclusions and perspectives

Conclusions

- Tracking systems for sheep can be very useful in extensive conditions such as on alpine pastures.
- Sheep behaviours with low and high activity could be distinguished based on Y-axis magnetometer or by applying the vector-magnitude of X, Y, Z-axes of magnetometer.
- In total, 96 % of data could be correctly classified into both activity levels in test dataset.

