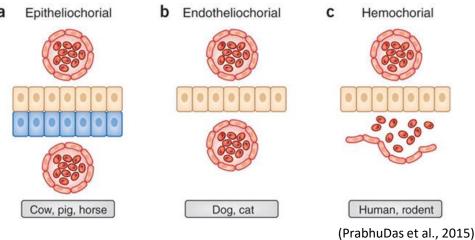
The bovine colostrum miRNome and

its potential implications for the

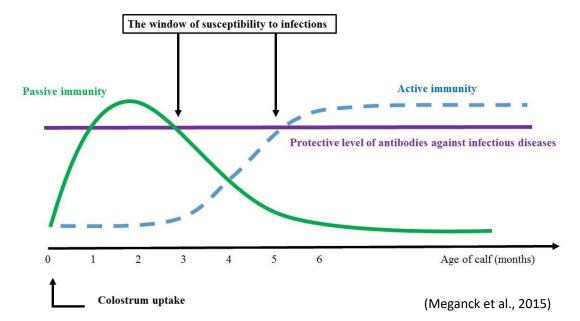
neonate.

Ilke Van Hese – EAAP annual meeting 2019 26th August, 2019

What is Colostrum?

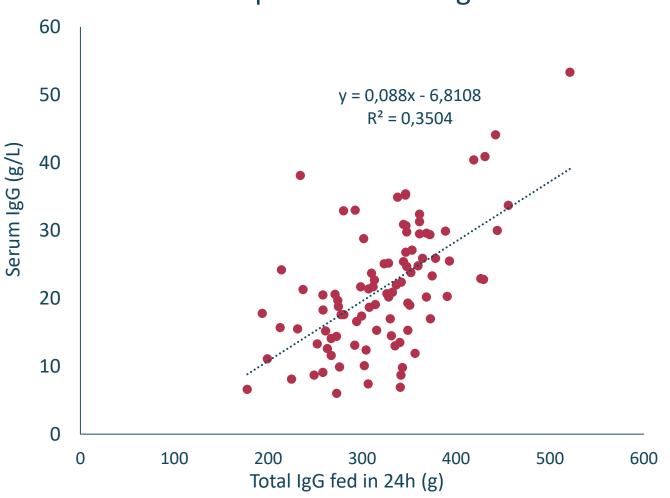

= The first secretion from the mammary glands after giving birth, rich in antibodies (Oxford dictionary)

	Colostrum	Milk
Fat (%)	6.7	4.0
Total protein (%)	14-14.92	3.10
IgG (g/L)	32-76	0.06-0.8
Minerals, Vitamins (%)	1.11	0.74


(Meganck et al., 2012)

Importance of Colostrum

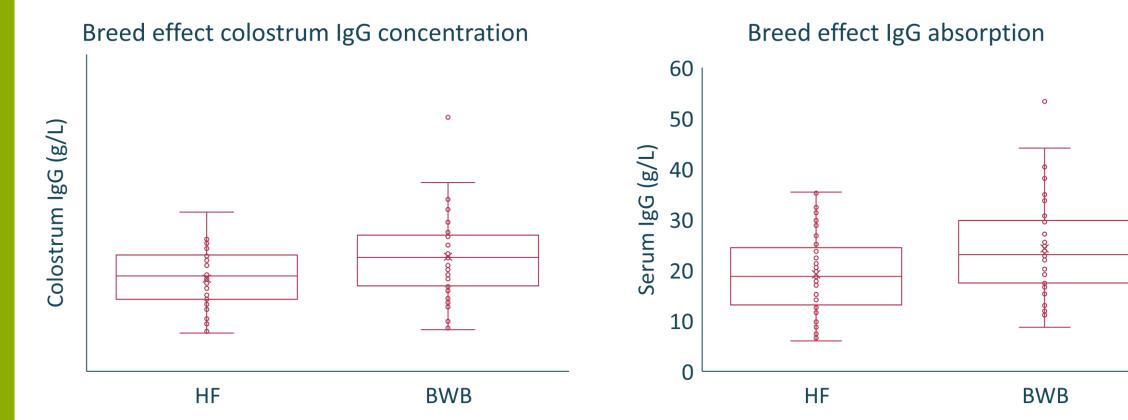
Specific structure bovine placenta → Calves are born without circulating antibodies



Colostrum supplies neonatal calf with antibodies \rightarrow Transfer of passive immunity

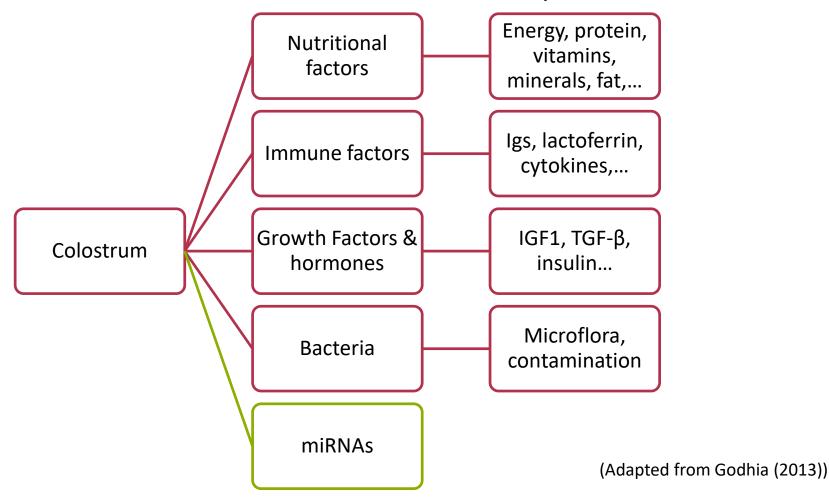
Individual differences in IgG absorption

Absorption colostral IgG

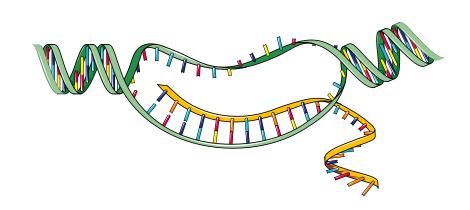

Samples collected from 94 calves (50 HF and 44 BB)

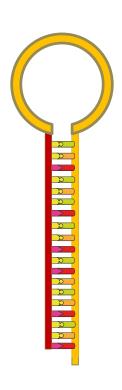
- Mean ± SD serum lgG: 21.5 ± 9.1 g lgG/L
- Mean ± SD total IgG fed: 322.2 ± 61.4 g
- Total IgG fed within 24h has a significant effect on serum IgG level (p-Value <0.001)

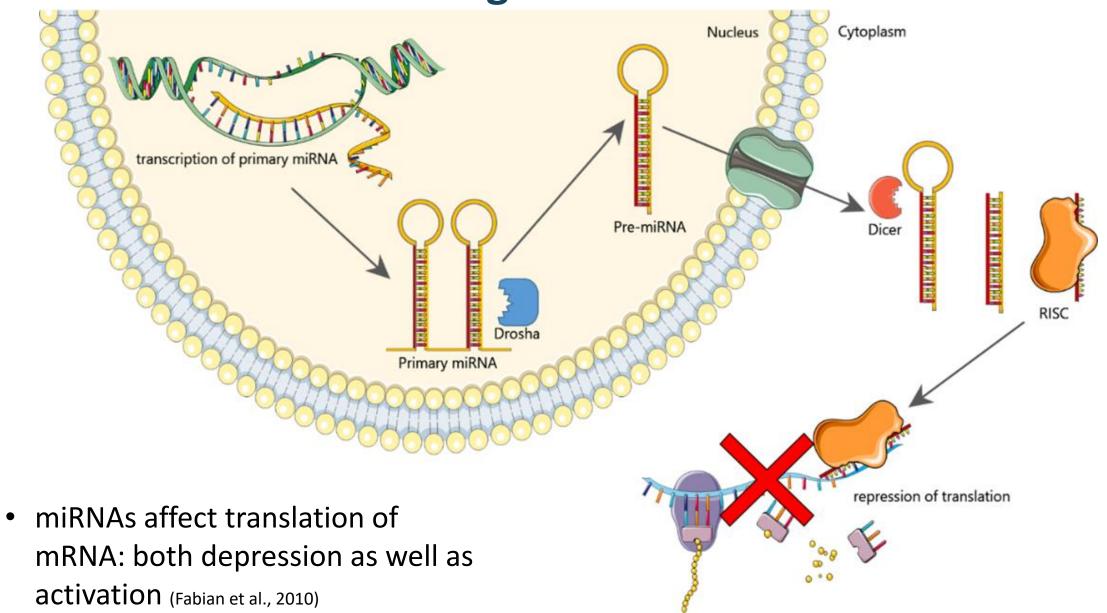
(Unpublished results, Van Hese)


How can we explain this variation?

- Breed effect: HF vs BB
 - Breed effect on colostrum IgG concentration is significant (p-value= 0.001)
 - Breed effect on absorption in calves not significant (p-value= 0.803)


Aim of this research

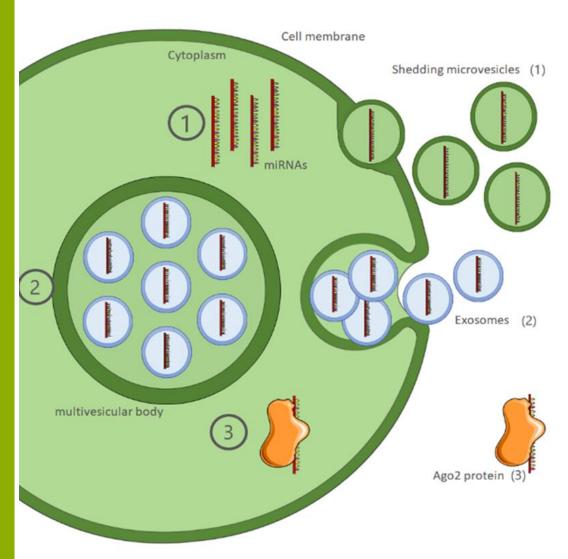

- Can variation in IgG absorption be explained by other components present in colostrum??
- Important source of nutrients and bioactive components:


Colostrum: beyond IgGs

- What are miRNAs?
 - short, noncoding RNA molecules: 21-25 nts
 - Produced in the nucleus
 - Regulate gene expression
 - Post transcription

miRNAs: Biogenesis and function

miRNAs: Biogenesis and function

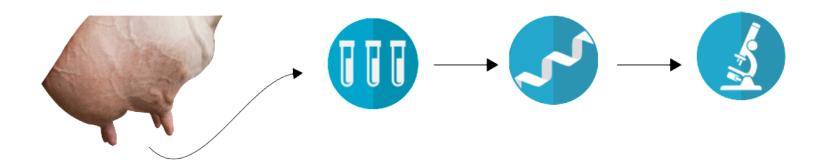

- Almost 49,000 mature miRNAs have been discovered in 271 species:
 1025 mature miRNAs in the bovine species (miRBase, release 22)
- Conservation among different species
 - E.g.: let-7 family detected in arthropods, nematodes, fish, birds and mammals
- One miRNA can regulate different mRNAs
- Involved in a variety of biological processes
 - Cell development
 - Cell differentiation
 - Immune system
- Alterations in miRNA expression linked to cancer

Number	Matrix	Sample amount	Species	Technique	Extraction method	Reference
386	Skimmed colostrum	300 μL	Human	Quantitative real-time PCR	miRNeasy kit (Qiagen)	(Weber et al., 2010)
395	Mammary gland day 1 postpartum	unknown	Murine (rat)	NGS^1	Trizol reagent (Invitrogen)	(<u>Zhang et al.,</u> 2014)
400	Mammary gland day 7 postpartum	unknown	Murine (rat)	NGS	Trizol reagent (Invitrogen)	(<u>Zhang et al.,</u> 2014)
242	Milk fat	24-78 mL	Human	Microarray analysis	miRCURY RNA Isolation-Biofluids kit (Ambion)	(Alsaweed et al., 2016)
921	Mammary gland	unknown	Bovine	Microarray analysis	miRNeasy mini kit (Qiagen)	(<u>Li et al., 2012b</u>)
491	Milk exosomes	unknown	Porcine	NGS (Solexa sequencing)	Trizol reagent (Invitrogen)	(Chen et al., 2014)
100	Colostrum whey	2.5-5.5 mL	Bovine	Microarray analysis	miRNeasy mini kit (Qiagen)	(<u>Izumi et al.</u> , 2012)
53	Mature milk whey	3.5-6.5 mL	Bovine	Microarray analysis	miRNeasy mini kit (Qiagen)	(<u>Izumi et al.</u> , 2012)
230	Colostrum	100 mL	Bovine	NGS (Solexa sequencing)	Trizol LS Reagent (Invitrogen)	(<u>Chen et al.,</u> 2010)
213	Mature milk	100 mL	Bovine	NGS (Solexa sequencing)	Trizol LS Reagent (Invitrogen)	(Chen et al., 2010)
303	Mammary gland peak lactation	unknown	Caprine	NGS (Solexa sequencing)	Trizol Reagent (Invitrogen)	(Li et al., 2012a)
337	Mammary gland dry period	unknown	Caprine	NGS (Solexa sequencing)	Trizol reagent (Invitrogen)	(Li et al., 2012a)

¹NGS = next generation sequencing

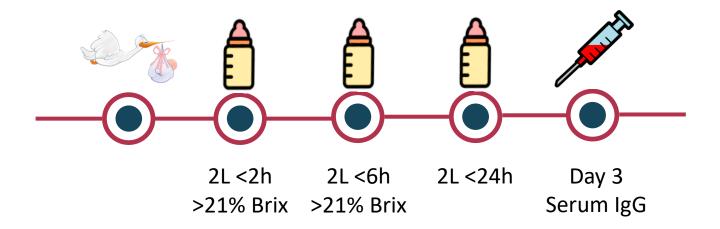
²DE = differentially expressed

miRNAs in colostrum


- miRNA expression is higher in colostrum than in milk
- Colostrum is especially rich in immune-related miRNAs
- Stored in microvesicles or exosomes
- Stable under harsh conditions
 - Rnase treatment
 - Acidic environment (~GIT)
 - Freeze-thaw cycles

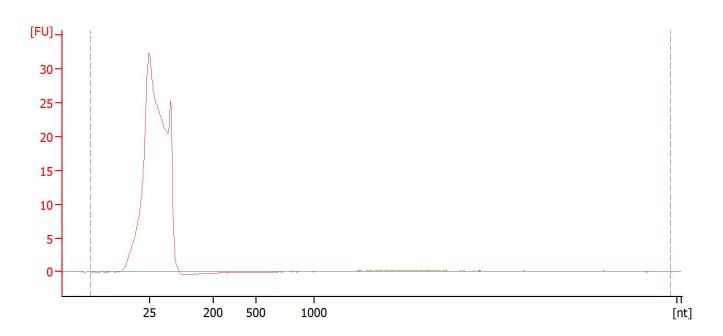
Limitations previous research

- miRNA expression of first milking colostrum?
- Are they maternal signaling molecules?
- Do miRNA act locally in the gut or are they absorbed?
- Which function do they have? Do they contribute in transfer of passive immunity?
- → Reveal miRNA expression pattern in first milking colostrum
- → Correlate miRNA expression in colostrum with passive immunity in the calf

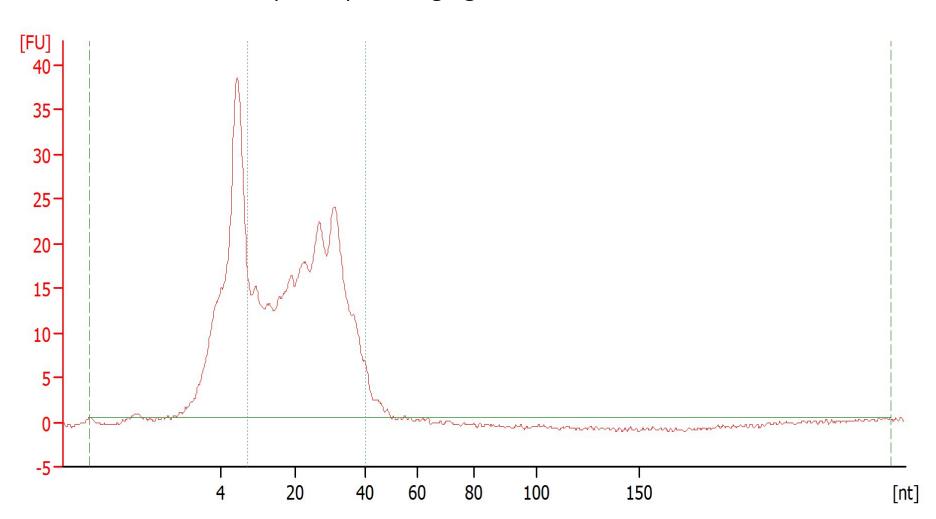

Present research

- Colostrum samples first milking (n= 50 HF and 44 BB)
- Sampling period: December 2017 to June 2019
- RNA extracted from whole colostrum
- Small RNA sequencing currently being performed

Present research


Colostrum administration

→ Test correlation between miRNA expression level OR presence/absence certain miRNAs and serum IgG level calves


Small RNA sequencing

- Quality control of 9 samples
 - With Agilent 2100 Bioanalyzer
 - Eukaryote Total RNA (RNA 6000 pico chip):

Small RNA sequencing

- Quality control of 9 samples
 - With Agilent 2100 Bioanalyzer
 - Small RNA chip: samples ranging from 42 88% miRNAs

Small RNA sequencing

- Library prep
 - Lexogen small RNA kit
 - Dual indexing
- Sequencing
 - Hiseq3000
- Data Analysis
 - miRNA identification and expression analysis
 - Correlation analysis between miRNA abundance and diversity and IgG absorption
 - Target gene prediction for miRNA of interest

Illumina

Wrap up

- Wide variation between calves in uptake of colostral IgGs
- No breed effect on absorption IgGs despite effect on colostrum IgG concentration
- Quality control miRNA
 - Colostrum is possibly rich in miRNAs
 - Small RNAs are most represented; no or only little ribosomal RNA
- To draw conclusion we have to wait for sequencing results

Thank you

Ilke.vanhese@ilvo.vlaanderen.be T + 32 (0)9 272 26 63

