Combining rapeseed meal with brewers' grains lowers methane emission intensity and the carbon footprint in dairy cows

<u>**D. Van Wesemael**</u>, L. Vandaele, S. De Campeneere, V. Fievez & N. Peiren EAAP 2019 – August 26, 2019 – Ghent, Belgium

Introduction

Climate change Global warming

Paris Agreement Aims at limiting the temperature increase to 1.5 °C

Reduction of greenhouse gas emissions

Introduction

(van Middelaar, 2014)

Introduction

(Hörtenhuber et al., 2011)

Materials and Methods

Rapeseed meal (residue from oil extraction)

Brewers' grains (residue from brewing beer)

Materials and Methods

dREF = reference diet with soybean mealdBG-RSM = diet with brewers' grains and rapeseed mealdRSM = diet with rapeseed meal

Animals

36 Holstein Friesian (HF) cows

97 ± 39 DIM (days in milk)

35,5 ± 4,8 kg milk day⁻¹

	Diet characteristics (g/kg DM)			
	dREF	dBG-RSM	dRSM	
DM (g/kg)	449	424	445	
Crude protein	158	162	158	
Ether extract	34	40	35	
VEM (/kg DM)	992	963	960	MS = ma
DVE	94	90	86	GS = gras BG = bre
OEB	5	10	9	SBM = sc BSM = ra
FOM	602	567	582	Conc. = 0

MS = maize silage GS = grass silage BG = brewers' grains SBM = soybean meal RSM = rapeseed meal Conc. = concentrates

Materials and Methods

Results - performance

Treatment			
dREF	dBG-RSM	dRSM	SEM

Results - methane

Treatment			CERA
dREF	dBG-RSM	dRSM	JEIVI

Results – carbon footprint

ΙΙΛΟ

- This *in vivo* study confirmed the effect of the combination
 brewers' grains + rapeseed meal on CH₄ emissions.
 - In a previous *in vivo* trial the combination of BG and RSM reduced methane intensity (g CH₄/kg FPCM) with 10%.

- This *in vivo* study confirmed the effect of the combination brewers' grains + rapeseed meal on CH₄ emissions.
 - In a previous *in vivo* trial the combination of BG and RSM reduced methane intensity (g CH₄/kg FPCM) with 10%.
- RSM alone showed potential for reducing CH_4 production (g CH_4 /day) and CH_4 yield (g CH_4 /kg DMI), but **not** for reducing CH_4 emission intensity (g CH_4 /kg FPCM)

- This *in vivo* study confirmed the effect of the combination brewers' grains + rapeseed meal on CH₄ emissions.
 - In a previous *in vivo* trial the combination of BG and RSM reduced methane intensity (g CH₄/kg FPCM) with 10%.
- RSM alone showed potential for reducing CH₄ production (g CH₄/day) and CH₄ yield (g CH₄/kg DMI), but **not** for reducing CH₄ emission intensity (g CH₄/kg FPCM)
- For both treatment diets the DMI was increased, but only the combined diet resulted in a higher FPCM production

- This *in vivo* study confirmed the effect of the combination brewers' grains + rapeseed meal on CH₄ emissions.
 - In a previous *in vivo* trial the combination of BG and RSM reduced methane intensity (g CH₄/kg FPCM) with 10%.
- RSM alone showed potential for reducing CH₄ production (g CH₄/day) and CH₄ yield (g CH₄/kg DMI), but not for reducing CH₄ emission intensity (g CH₄/kg FPCM)
- For both treatment diets the DMI was increased, but only the combined diet resulted in a higher FPCM production
- Reducing the amount of soybean meal in the diet lowers the carbon footprint of feed production

ILVO

Conclusion

Replacing soybean meal by alternative protein sources in smart combinations allows to reduce the carbon footprint of dairy production systems at feed and enteric CH_4 level

ILVO

Thank you! Questions?

Dorien Van Wesemael

Flanders Research Institute for Agriculture, Fisheries and Food

> Scheldeweg 68 9090 Melle – Belgium T + 32 (0)9 272 26 64

dorien.vanwesemael@ilvo.vlaanderen.be www.ilvo.vlaanderen.be

