

Ákos Kenéz¹, Sonja Bässler², Christian Koch³, Theresa Scheu³, Korinna Huber²

¹Deperatment of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong

²Institute of Animal Science, University of Hohenheim, Stuttgart, Germany

³Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler an der Alsenz, Germany

Sphingolipid signalling

- Bioactive sphingolipid metabolites (Maceyka and Speigel, Nature, 2014):
- Interaction with:
 - oxidative stress
 - inflammation
 - insulin resistance

 Ceramides involved in metabolic adaptation in transition cows (McFadden and Rico, JDS, 2019)

Metabolic effect of intensive feeding

- Intensive feeding: High energy diets to enhance production performance (faster, greater body weight gain)
- "Overnutrition syndrome" in transition cows (Janovick et al., JDS, 2011)

Hypothesis:

- High energy diet triggers metabolic alterations that correspond to a more inflammatory phenotype
- This is reflected in the liver by altered sphingolipid metabolism

Materials and Methods

- Holstein fattening bulls for beef production
- Randomly assigned to 2 dietary treatment groups:
 - Intensive feeding (n=15): Corn- and grass-silage based diet + 6 kg/day/animal concentrate feed
 - Control feeding (n=15): Corn- and grass-silage based diet
 - Duration of treatments: Last 8 months of the fattening period
- Slaughter at 20 months of age \rightarrow collection of liver samples
 - Liver: central organ for sphingolipid metabolism, correlates with plasma profile

CityUniversity of Hong Kong

Results:

VS.

Final live weight:

806.5 ± 9.4 kg

712.1 ± 11.5 kg

(mean ± SEM)

Metabolomics: Sphingolipid profiling

- Methanol-chloroform based lipid **extraction from liver** homogenates
- Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis in positive- and negative-ion mode
- 77 sphingolipid species targeted: concentrations determined by linear regression calibration curves based on standards
 - Ceramides and dihydroceramides (24)
 - Sphingomyelins and dihydrosphingomyelins (19)
 - Ceramide- and sphingosine-1-phosphates (16)
 - Hexosylceramides (10)
 - Sphinganines and sphingosines (8)
- Multivariate statistical analysis in MetaboAnalyst 4.0

Liver sphingolipid profiles

- Concentrations of 77 sphingolipids (n=15 per treatment)
- Principal component analysis (PCA): Liver sphingolipid concentration data showed separation according to dietary treatments

PCA Scores Plot

Significant metabolites

- Volcano plot: Filtering significant metabolites (FC > 1.2 and FDRadjusted P < 0.05)
- 15 lipids greater in "Intensive" group
- 4 lipids greater in "Control" group

Volcano plot

Greater concentration in "Intensive" group

Greater concentration in "Control" group

Ceramide-1-phosphate(d18:1/28:0)

Ceramide-1-P (d18:1/28:0) – very long chain

Ceramide (d18:1/17:0)

Sphingomyelin (d18:1/18:2)

Sphingomyelin (d18:1/18:2) – double unsaturated

and Sphingosine (d17:1) – odd chain

Uncommon sphingolipids:

Metabolic function yet to be explored

Sphingolipids greater in "Intensive" group

- Chain length 12:0 and 14:0
- Ceramide: antagonises insulin action in transition cows (Rico et al., JDS, 2015) and promotes apoptosis and endothelial dysfunction in humans (Maceyka and Spiegel 2014)
- Ceramide-1-phosphate: modulates inflammation and immune response in humans (Maceyka and Spiegel 2014)
- Sphingomyelin dihydroceramide as precursors

(Maceyka and Spiegel, Nature, 2014)

80

Thank you for your attention!