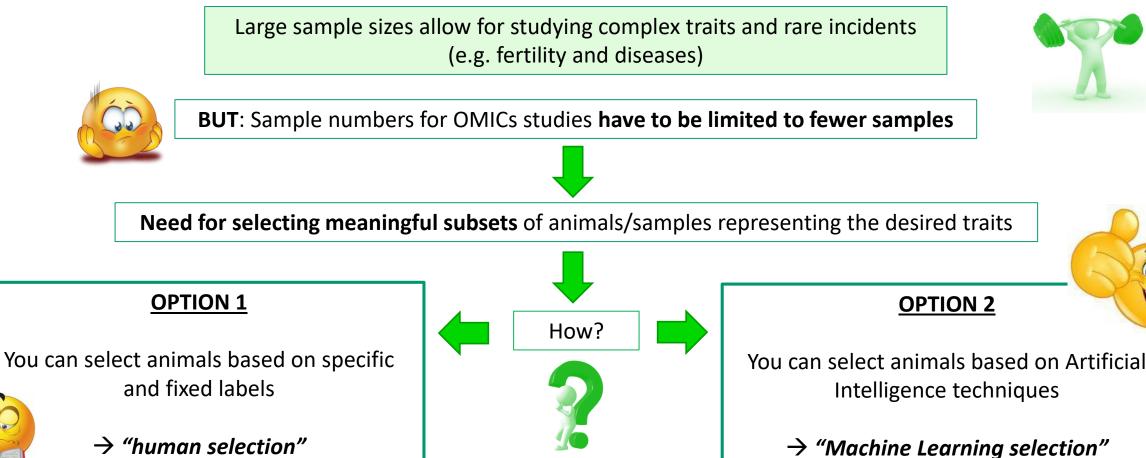


Getting prepared for Metabolomics studies: deliberate selection of samples from large animal studies

R. Riosa¹, *M.H. Ghaffari¹*, *M. Iwersen²*, *D. Suess²*, *M. Drillich²*, *C. Parys³* and *H. Sauerwein¹*

rriosa@uni-bonn.de

¹Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany ²Clinical Unit for Herd Health Management in Ruminants, University of Veterinary Medicine Vienna, 1210 Vienna, Austria ³Evonik Nutrition & Care GmbH, 63457 Hanau, Germany

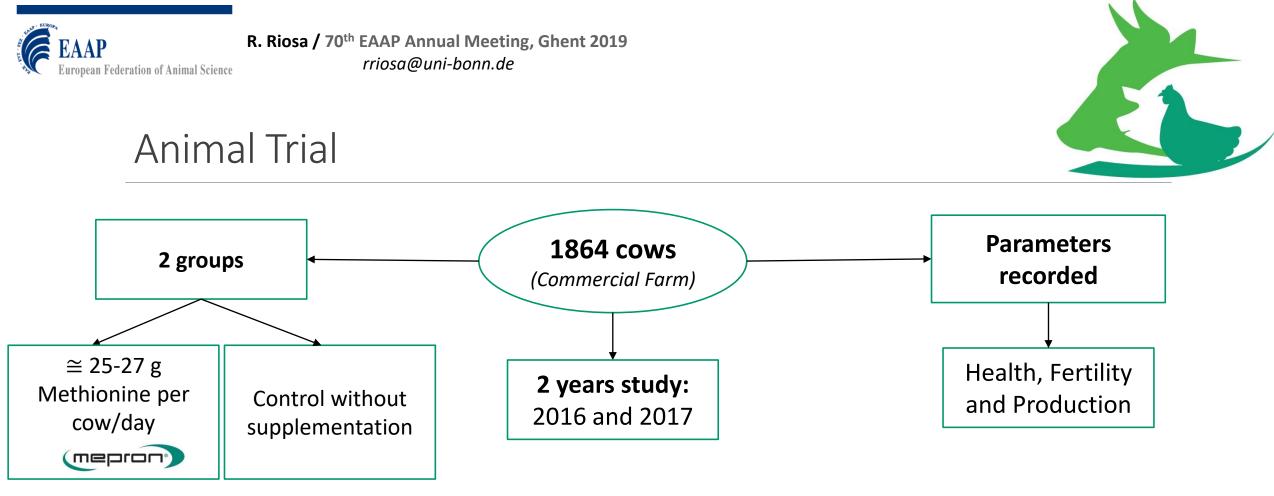


This project has received funding from the European Union's Horizon 2020 research and innovation programme H2020-MSCA- ITN-2017- EJD: Marie Skłodowska-Curie Innovative Training Networks (European Joint Doctorate) – Grant agreement nº: 765423 – MANNA

R. Riosa / 70^a EAAP Annual Meeting, Ghent 201

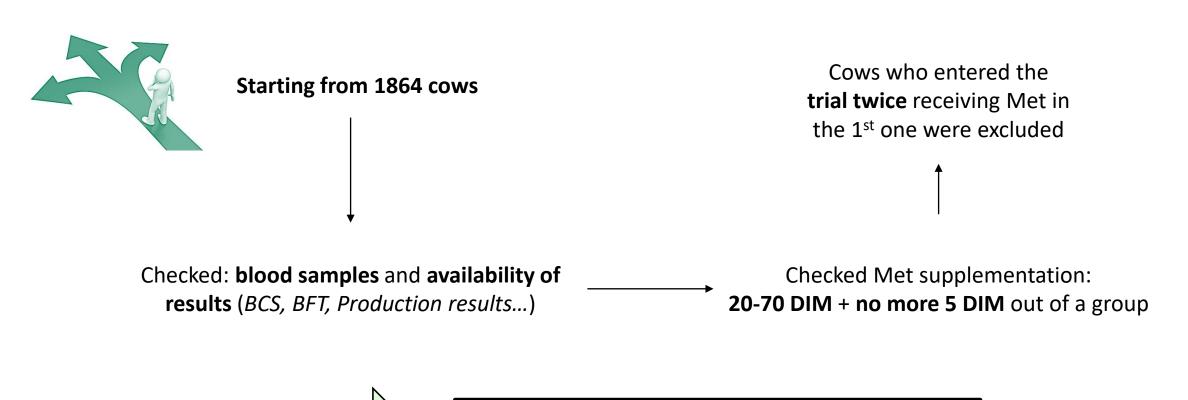
THE AIM OF THIS PROJECT WAS TO USE <u>MACHINE LEARNING</u> AS A TOOL <u>TO SELECT MEANINGFUL</u> SAMPLES THAT ARE REPRESENTATIVE OF A <u>VARIATION IN THE POPULATION</u> BY TESTING DIFFERENT HYPOTHESIS

Starting Database



All these data were collected in Excel files + all the records relative to the cows were taken with the management software **DairyComp DC 305** (Valley Agricultural Software, USA) (e.g. cows changing groups, mastitis, sick pen...)

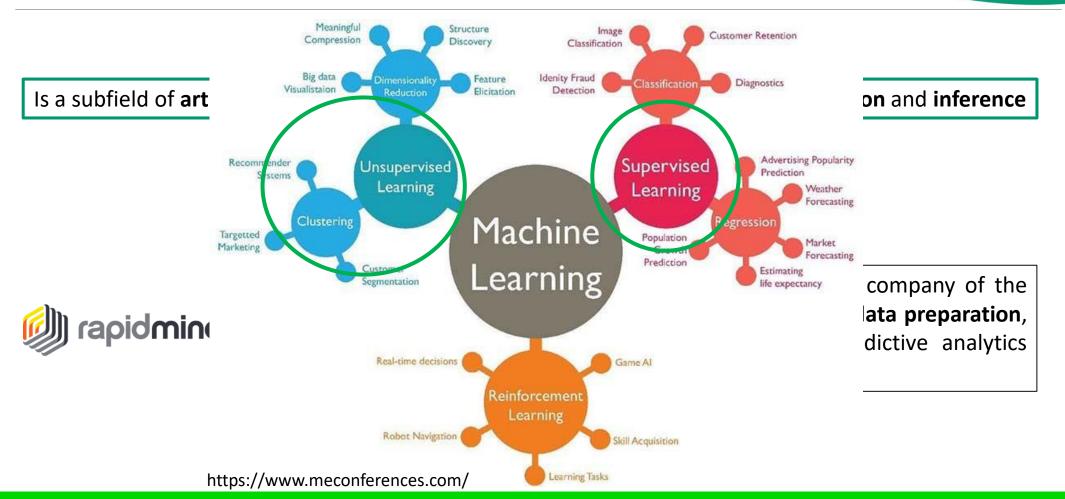
Screening & Animal Selection

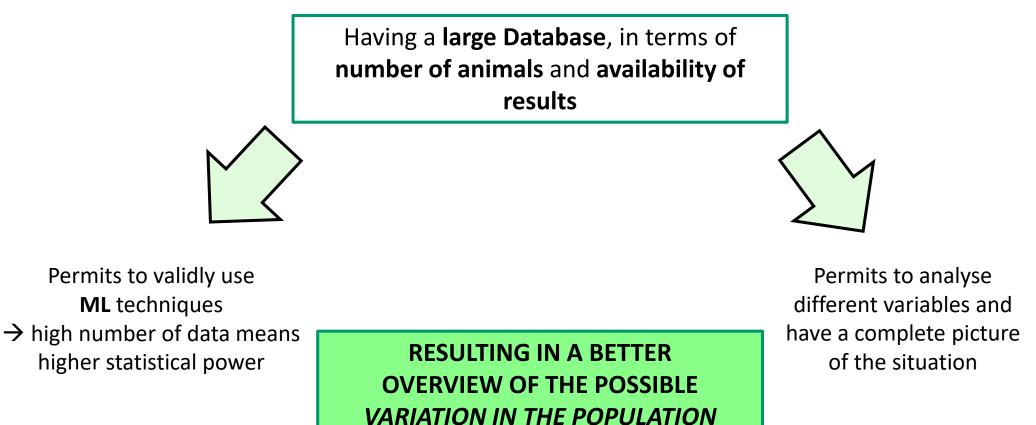


Screening of the Database

From 1864 cows to 1038 (Masterfile)

Using Machine Learning Techniques





What is Machine Learning (ML)?

Why using ML techniques?

How did we use ML?

SUPERVISED ML – PREDICTION

• Permits to **identify patterns** in data

• Uses different models (*Native Bayes, Generalized Linear Model,* **Deep Learning**...)

Importance of precision, accuracy and sensitivity

 \rightarrow We aimed to find interactions between treatments (Control vs. Met) and disease by this method

→ → we identified Endometritis x Met being most significant

UNSUPERVISED ML - CLUSTERING

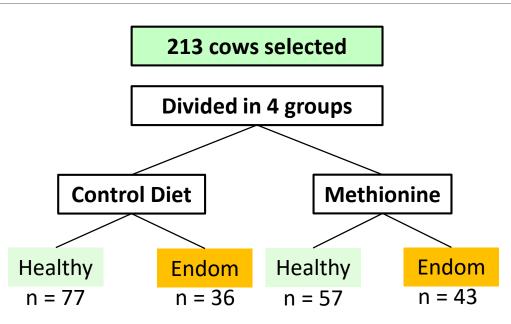
- Permits to **identify groups** of similar data
- K-means and X-means are the models that were used
- We used both of them \rightarrow trying to identify the best possible grouping

→ Via this method we identified different grouping based on the BFT-BHB interaction & Pattern of Body Condition Loss during transition period

Results from ML

GROUPINGS WERE MADE DEPENDING ON WHAT WE WERE INTERESTED IN!! EACH GROUPING IS DIFFERENT FROM THE OTHER → THE POWER OF ML

Validation of Results



Diet Treatment vs Health Condition

Data analyzed using the *MIXED procedure of SAS* (SAS Institute Inc., Cary, NC)

Model included: random effect of cow and the fixed effect of the main factors M, CE, and their interaction (M × CE) Days in milk was considered a covariate for the dependent variables

Diet Treatment vs Health Condition

Disease Effect

Disease x Diet Effect

Diet Effect

	P-value
Calving to conception interval (d)	0.0053
Milk at 30 DIM (Kg/d)	0.013
ECM at 30 DIM	0.079
Urea at 30 DIM (mg/100 mL)	0.003
Fat at 60 DIM (kg)	0.05
Protein at 30 DIM (kg)	0.04

	P-value
BFT at 50 DIM (mm)	0.065
BCS at 50 DIM (score)	0.04
SCC at 70 DIM (10³/ml)	0.097
ECM at 30 DIM	0.065
F:P Ratio at 30 DIM	0.008
Fat at 30 DIM (%)	0.015

	P-value
BFT at 30 DIM (mm)	0.06
BCS at 30 DIM (score)	0.04
SCC at 70 DIM (10³∕ml)	0.039
Milk at 60 DIM (kg/d)	0.055
Protein at 30 DIM (kg)	0.094
Protein at 60 DIM (kg)	0.025

Conclusion & Future Objectives

Conclusion & Future Objectives

Having large datasets is desirable, but a considerable amount of time is necessary to prepare the data for Machine Learning

Machine Learning is an important tool that enables to find patterns and thus select meaningful samples

Results from the *Treatment vs Disease* study showed that the grouping was effective as statistical differences and interactions were found between the groups

Different phenotypes were detected

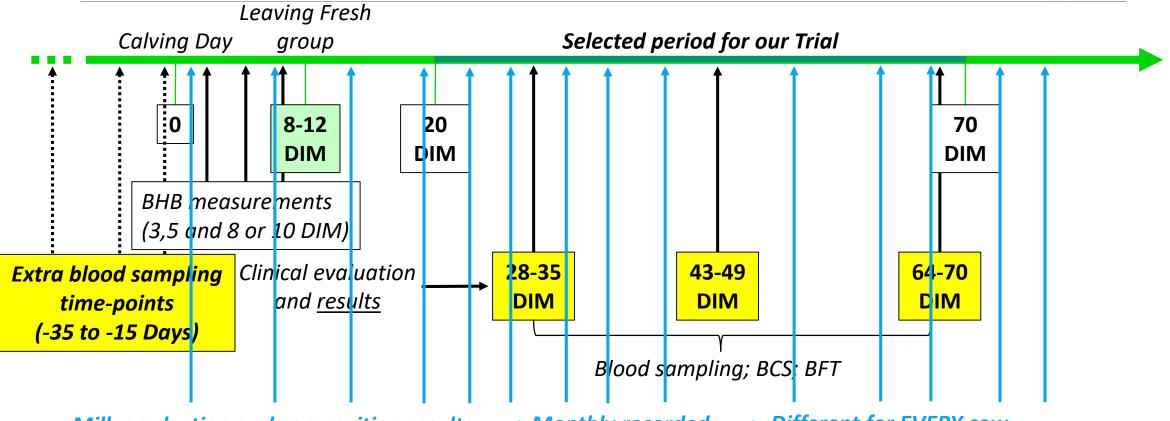
→ future **OMICs analyses** will permit us to have further insights and obtain a complete picture of the mechanisms involved

Machine Learning will be used again to further analyse the OMICs results with the aim to identify markers which can then be targeted on all cows from the starting database

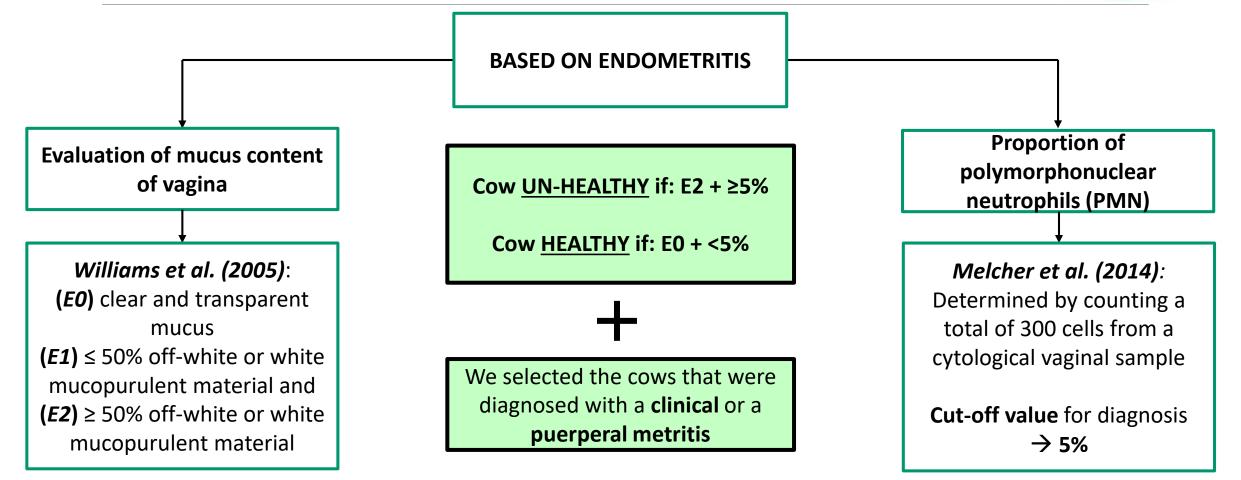
"Data is the new science. Big Data holds the answers. Are you asking the right questions?" *Patrick P. Gelsinger*

THANK YOU FOR YOUR ATTENTION

Supplementary Material



Overview - Animal Trial



Milk production and composition results -----> Monthly recorded ----> Different for EVERY cow

Endometritis vs Healthy Selection

Statistical Analysis

	Control			Methionine			SEM		P-Value	
	CE	HEL		CE	HEL			TREAT	DISEASE	T x D
BFT30DIM (mm)	10.17	11.04	1	10.14	9.24		0.238	0.06	0.79	0.11
BFT50DIM	8.81	10.25	5	9.23 8.6			0.249	0.16	0.40	0.065
BFT70DIM	8.61	9.91		9.07	8.82		0.265	0.86	0.23	0.14
BCS30DIM (score)	2.69	2.75		2.64	2.58		0.027	0.04	0.91	0.26
BCS50DIM	2.56	2.74		2.63	63 2.56		0.028	0.29	0.33	0.04
BCS70DIM	2.58	2.70		2.56	6 2.57		0.031	0.33	0.31	0.43
		Con	trol	Γ	Methionine		SEM		P-Value	
		CE	HEL	CE	HE	EL		TREAT	DISEASE	T x D
Calving to Concep Interval (d)	tion	114.43	95.47	121.6	57 101	56	3.299	0.47	0.0053	0.92

EA		Control		Control Methionine SEM				SEM	P-Value					
Euroj		CE	HEL	CE	HEL		TREAT	DISEASE	ТхD	PARITY	DIM			
	Milk (kg/d)	35.32	38.07	34.70	38.49	0.594	0.50	0.004	0.52	0.10	<.0001			
1st	ECM	33.55	36.55	32.94	36.94	0.585	0.62	0.004	0.67	0.006	<.0001			
Time	SCC (10³/ml)	157.59	115.72	148.52	128.93	15.307	0.79	0.27	0.39	0.76	<.0001			
Point	Prot (%)	3.17	3.26	3.24	3.23	0.026	0.72	0.26	0.25	0.25	<.0001			
	Fat (%)	3.73	3.75	3.58	3.81	0.065	0.95	0.42	0.43	0.002	<.0001			
	Urea mg/100ml	21.78	24.12	21.13	25.24	0.549	0.63	0.003	0.51	0.55	0.099			
	Milk (kg/d)	42.13	42.45	43.14	43.90	0.383	0.12	0.50	0.78	0.009	0.74			
2nd	ECM	37.03	38.72	38.10	39.77	0.449	0.24	0.07	0.99	<.0001	0.14			
Time	SCC (10³/ml)	205.87	73.00	76.14	100.73	18.293	0.12	0.27	0.63	0.25	0.86			
Point	Prot (%)	3.01	3.07	3.04	3.03	0.017	0.91	0.57	0.24	0.53	0.20			
	Fat (%)	3.30	3.44	3.17	3.39	0.051	0.43	0.05	0.65	0.0003	0.014			
	Urea mg/100ml	24.05	26.03	25.22	25.55	0.564	0.70	0.41	0.76	0.057	0.62			
2	Milk (kg/d)	40.59	40.70	41.66	40.28	0.404	0.69	0.45	0.37	0.017	0.054			
3rd Time	ECM	36.57	37.82	36.73	36.78	0.420	0.60	0.44	0.47	<0.0001	0.054			
Point	SCC (10³/ml)	246.62	108.72	85.42	135.13	18.815	0.039	0.71	0.097	0.40	0.75			
_	Prot (%)	3.09	3.14	3.13	3.12	0.018	0.84	0.49	0.40	0.90	0.75			
	Fat (%)	3.35	3.56	3.18	3.42	0.057	0.17	0.54	0.87	0.0002	0.84			
This Train	Urea mg/100ml	24.79	25.43	25.84	25.83	0.438	0.44	0.74	0.73	0.33	0.76			

Statistical Analysis

Too many variations in DIM for Milk production

Further selection based on DIM (Analyses with 54 cows)

		Control		Methi	onine	SEM		P-Valu	ue	
		CE	HEL	CE	HEL		TREAT	DISEASE	ТхD	PARITY
Around 30 DIM	Milk (kg/d)	40.13	44.51	41.99	46.27	0.695	0.30	0.013	0.94	0.78
	ECM	40.22	40.23	38.10	44.67	0.853	0.63	0.079	0.065	0.30
Around	Milk (kg/d)	40.05	43.19	42.92	47.24	0.810	0.055	0.046	0.73	0.35
60 DIM	ECM	37.08	39.19	37.65	43.78	0.930	0.16	0.034	0.26	0.038

	Control		Methionine		SEM		P-Value				
	CE	HEL	CE	HEL		TREAT	DISEASE	ТхD	PARITY		
F:P 30DIM	1.36	1.10	1.08	1.23	0.037	0.32	0.49	0.008	0.075		
F:P 60DIM	1.12	1.13	1.01	1.13	0.025	0.28	0.27	0.31	0.06		

Statistical Analysis

		Control		Methionine		SEM	P-Value			
		CE	HEL	CE	HEL		TREAT	DISEASE	ТхD	PARITY
Around	Prot %	3.01	3.06	3.11	3.11	0.025	0.19	0.65	0.75	0.30
30 DIM	Prot kg	1.23	1.36	1.31	1.44	0.021	0.094	0.005	0.93	0.66
Around 60 DIM	Prot %	3.12	3.01	3.10	3.14	0.034	0.42	0.78	0.30	0.046
	Prot kg	1.25	1.30	1.32	1.48	0.029	0.025	0.075	0.31	0.014

		Control		Methionine		SEM	P-Value			
		CE	HEL	CE	HEL		TREAT	DISEASE	ТхD	PARITY
Around	Fat %	4.09	3.36	3.36	3.80	0.112	0.53	0.60	0.015	0.051
30 DIM	Fat kg	1.66	1.50	1.41	1.77	0.054	0.92	0.40	0.016	0.09
Around 60 DIM	Fat %	3.49	3.42	3.11	3.53	0.085	0.44	0.34	0.16	0.009
	Fat kg	1.40	1.48	1.34	1.66	0.048	0.58	0.04	0.24	0.003

