

Differential expression of bovine mRNA isoforms with functional consequence on mastitis host defense

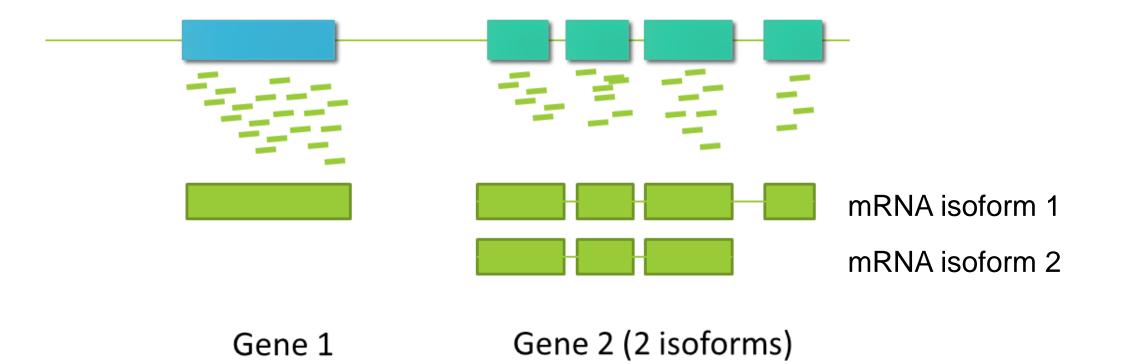
Victoria Asselstine¹, J.F. Medrano², F. Miglior¹, N. Karrow¹, A. Islas-Trejo², A. Cánovas¹

¹Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 ²Department of Animal Science, University of California-Davis, Davis, California, United States, 95616

Ghent, Belgium August 26th, 2019

Prevention of Intramammary Infections

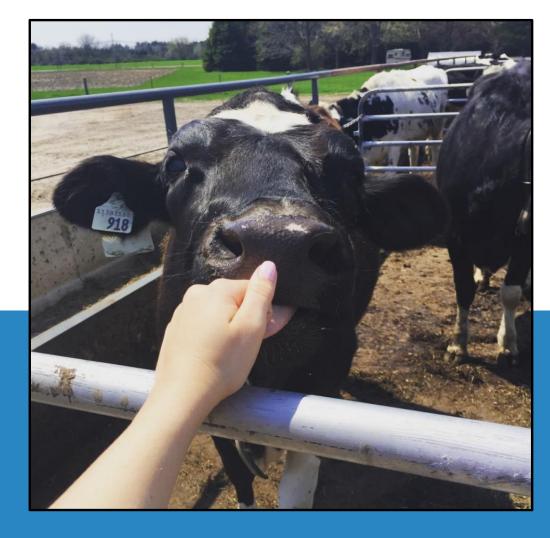
- Host's individual immune response to mastitis varies, some cows are more susceptible to intramammary infections than others
- Mucus layer
 - Highly hydrated barrier against bacterial and fungal organisms
 - Forms in the mammary gland after milking
- Two forms of mastitis:
 - 1. Clinical mastitis diagnosed by visual cues
 - On average, costs producers \$170 USD per cow
 - 2. Subclinical mastitis no clinically detectable abnormalities
 - High somatic cell count (>150,000 cells/mL) impacts the quality and hygiene of the milk


Transcriptomics and RNA-Sequencing

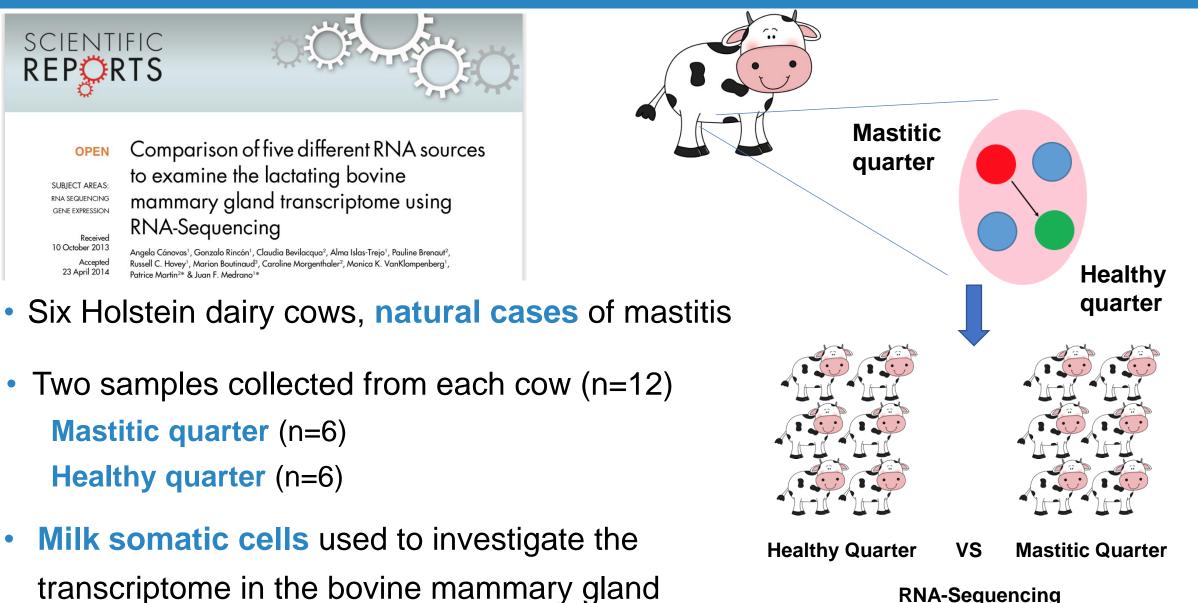
- Transcriptomics to measure gene expression in the entire transcriptome
- The transcriptome is the sum of all RNA synthesized in a **specific cell/tissue** at a **specific moment**
- RNA-Sequencing technology allows us to study the transcriptome at a high-throughput level
 - Gene expression, mRNA isoform expression
 - Genetic variants (SNP, indel and splice variants)

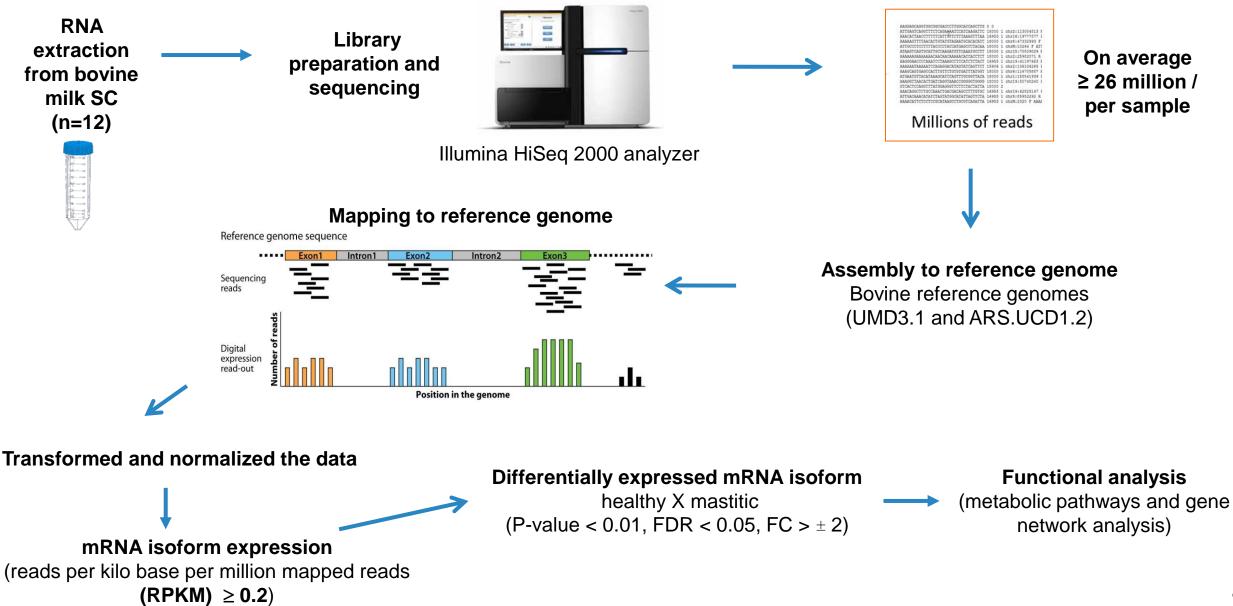
mRNA lsoforms

What is an mRNA isoform?



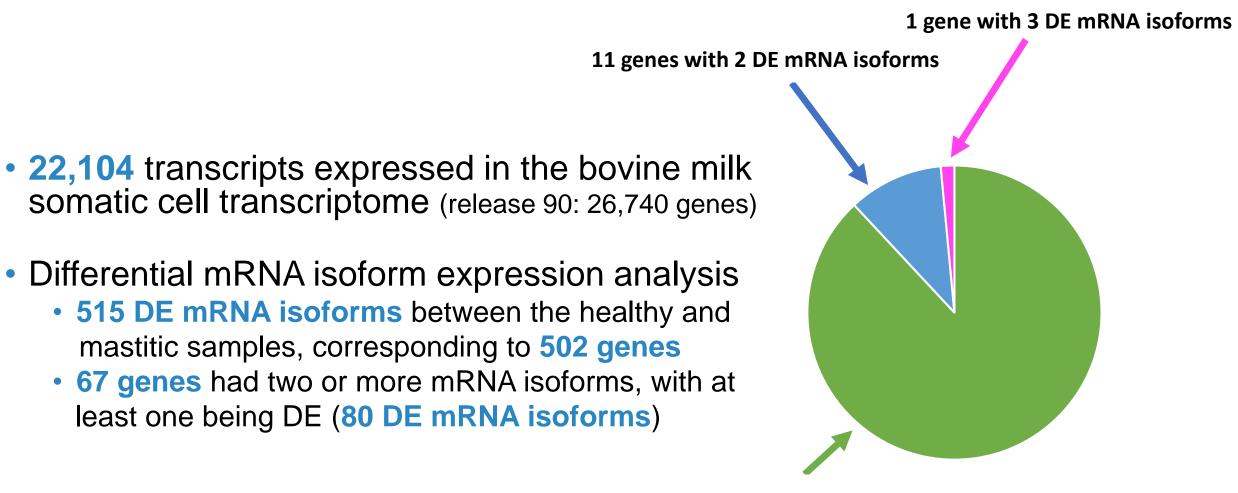
To identify mRNA Isoforms that are differentially expressed (DE) and have functional consequences on host defense to mastitis


Identify mRNA Identify genetic Identify DE mRNA Generate isoform DE variants within isoforms highly a functional between healthy candidate mRNA involved in candidate mRNA and mastitic isoforms immune processes isoform list (SNP, indels) quarters



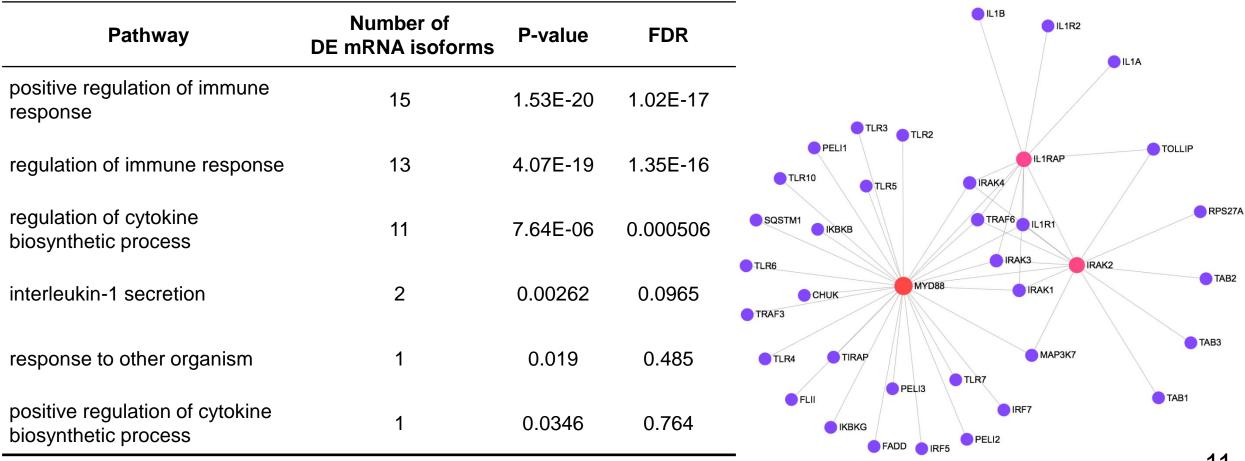
Materials and Methods

Sample Collection


RNA-Sequencing

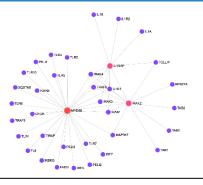
Results and Discussion

Differentially Expressed mRNA Isoforms



55 genes with 1 DE mRNA isoforms

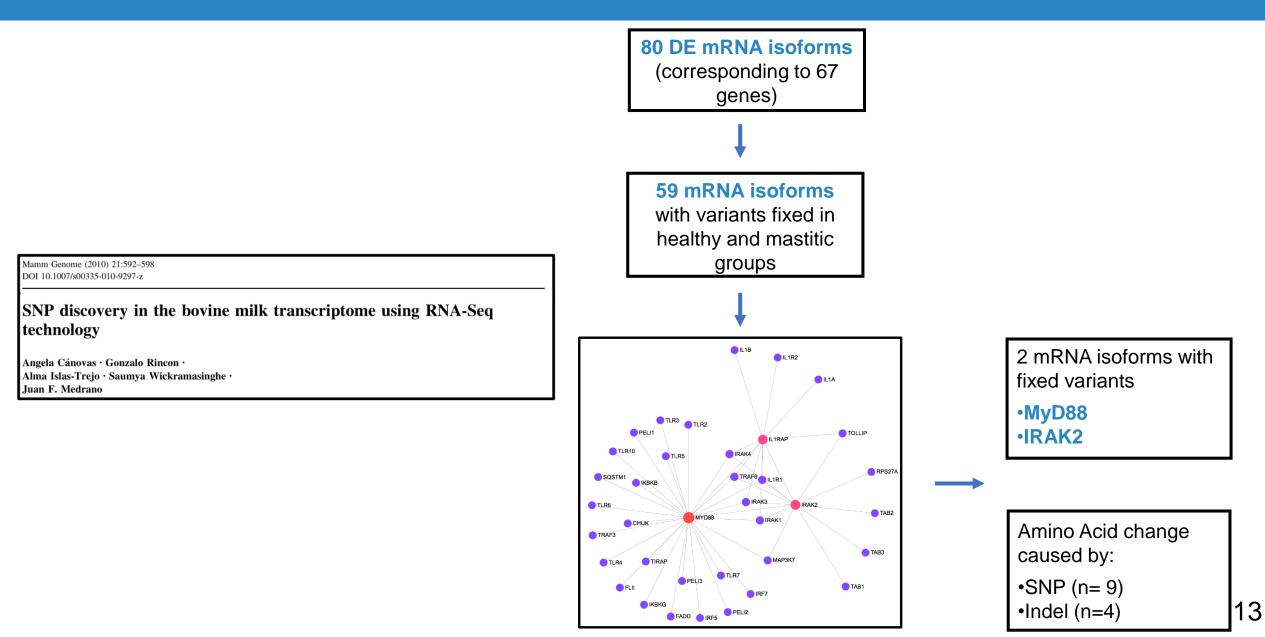
Metabolic Pathways and Gene Network


Using the list of 80 DE mRNA isoforms

33 significant metabolic pathways identified

Functional Candidate mRNA Isoforms

- There are 80 DE mRNA isoforms within the gene networks
 - Three genes with mRNA isoforms from this list explain the majority of the topology



Associated	mRNA isoform annotated	mRNA isoform	Length (bp)	P-value	Fold change	FDR	RPKM	
gene name							Healthy	Mastitic
MyD88	2	mRNA isoform 1	2558	1.40E-04	3.56	0.0117	50.95	124.86
		mRNA isoform 2	2423	0.13561368	2.74	0.8482	0.43	1.11
IL1RAP	2	mRNA isoform 1	2064	2.05E-04	5.43	0.0151	4.17	15.61
		mRNA isoform 2	1921	1.56E-03	5.24	0.0600	10.06	36.92
IRAK2	2	mRNA isoform 1	2799	4.62E-04	3.68	0.0272	6.58	20.13
		mRNA isoform 2	1982	0.524189657	-2.28	1.0000	1.37	0.40

Miterleiakihifferenception ascence scholasse (diRUARADE)88)

Respectively and the maguatian and the press and the press of the pres

SNP Discovery within DE mRNA Isoforms

SNP Discovery within DE Genes

JDS16504

Genetic mechanisms regulating the host response during mastitis

V. Asselstine,¹ F. Miglior,¹ A. Suárez-Vega,¹ P. A. S. Fonseca,¹ B. Mallard,² N. Karrow,¹ A. Islas-Trejo,³ J. F. Medrano,³ and A. Cánovas^{1*} ¹Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1

²Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 ³Department of Animal Science, University of California–Davis 95616 2 DE genes with fixed variants in healthy and mastitic groups •SDS •NFKBIA

7 DE genes

Amino Acid change caused by: •SNP (n=32)

Conclusions

- In total 80 DE mRNA isoforms, corresponding to 67 genes, were significantly identified between healthy and mastitic samples
- Using the list of 80 DE mRNA isoforms, 33 significant metabolic pathways with functional relevance were identified, including *IL-1* secretion and response to other organisms
- 3 genes (MyD88, IRAK2 and IL1RAP) with at least two mRNA isoforms, with at least one being DE were identified integrating structural and functional genomic data, adding them to the candidate gene list
- Putative functional variants were identified in candidate mRNA isoforms, but these need to be further validated

Future Direction

- Alignment statistics comparison between bovine reference genomes (UCD3.1 and ARS.UCD1.2)
 - We expect the increased percentage of mapped reads will result in better identification of DE genes, DE mRNA isoforms and variants

				UMD3.1		ARS-UCD2.1			
Group	Sample ID	Total reads mapped	Uniquely mapped %	Non- specifically mapped %	Unmapped %	Uniquely mapped %	Non- specifically mapped %	Unmapped %	
Healthy	50A	25,759,763	80.05	4.26	15.69	87.79	4.85	7.36	
	50C	15,164,354	66.14	7.22	26.64	75.41	8.59	16.01	
	50E	13,312,747	66.91	4.27	28.83	78.41	5.08	16.51	
	50G	11,364,349	51.08	3.03	45.89	67.33	4.15	28.52	
	70A	18,248,489	73.65	20.30	6.05	86.51	12.28	1.21	
	70E	24,674,327	90.58	3.90	3.90	94.39	4.48	1.13	
	Total	108,524,029	74.78	7.53	17.69	81.64	6.57	11.79	
Mastitic	50B	20,917,517	86.83	4.63	8.53	91.17	5.07	3.76	
	50D	28,919,278	89.00	6.20	4.81	91.83	6.41	1.75	
	50F	16,394,480	81.82	4.89	13.29	87.66	5.47	6.87	
	50H	16,970,255	81.03	6.02	12.95	87.49	6.56	5.95	
	70C	16,254,989	91.15	4.70	4.14	94.51	4.34	1.15	
	70G	18,846,584	92.01	4.70	3.30	95.01	4.10	0.89	
	Total	118,303,103	87.25	5.27	7.48	91.28	5.33	3.40	

Acknowledgements

Acknowledgements

ERSITY

centre for

of livestock

genetic improvement

Collaborators

University of Guelph

- Dr. Angela Cánovas
- Dr. Filippo Miglior
- Dr. Niel Karrow
- Dr. Bonnie Mallard
- Dr. Aroa Suárez-Vega
- Dr. Pablo Fonseca

University of California - Davis

- Dr. Juan Medrano
- Alma Islas-Trejo

Ministry of Agriculture, Food and Rural Affairs

Thank you

Victoria Asselstine (vasselst@uoguelph.ca)