

INFACT: FROM INSECT TO SURFACTANT

Geert R Verheyen, Ooms T, Vreysen S, Van Miert S RADIUS group, Thomas More Kempen, Geel, Belgium

> Filip Meersman Mylène NV, Heist-Op-Den-Berg, Belgium

RADIUS @ THOMAS MORE

RADIUS combines diverse expertise in relation to sustainability, with focus on insect breeding and microalgae cultivation (on waste streams) and extraction/implementation of biomaterials.

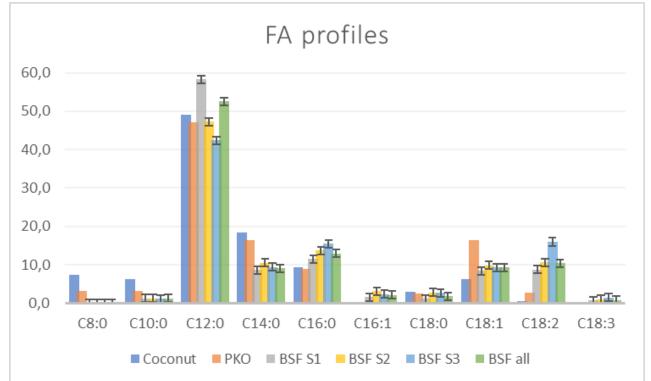
Microalgae cultivation

Downstream processing

http://radius.thomasmore.be/

BLACK SOLDIER FLY

- Interesting species because:
 - Tropical species not viable in our climate
 - Not a pest species
 - High food conversion rate
 - Reared on small surface at high density
 - Reared on many organic waste/sidestreams
 - Potential source for biomaterials:
 - Chitin/chitosan
 - Proteins
 - Fats



FATTY ACID PROFILE -> INFACT

Coconut and Palm Kernel Oil compared to BSF fats (3 sources):

- Very similar profiles
- High lauric acid content
- Similar applications possible?

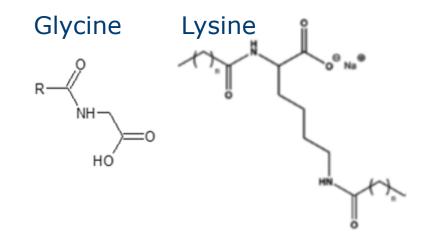
- PKO and CCO: large impact on deforestation and biodiversity
- Case: surfactants using BSF instead of CCO (e.g. amilite)

The implementation of black soldier fly as a new highvalue and sustainable source of fats for the production of green surfactants, making use of green and less polluting synthesis approaches

TETRA project – VLAIO: HBC.2017.0038

INFACT - OVERVIEW

Amino-acyl based surfactants using BSF fatty acid coupled to:


- Case 1: Glycine
- Case 2: Lysine

Synthesis approaches:

- Chemical approaches:
 - Schotten-Baumann (Case 1 and 2)
 - Coupling reagents (Case 2)
- Thermal amidation (Case 1 and 2)

Characterisation of the surfactants

Implementation (cosmetics, crop protection, ...)

THOMAS

INFACT - SYNTHESIS APPROACHES

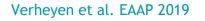
Classical chemical syntheses:

- 1. Hydrolysation of fats to free fatty acids
- 2. Schotten-Baumann (Sreenu et al. 2014 Colloids and Surfaces A 449: 74-81)
 - a) React fatty acids with thionylchloride
 - b) React fatty acid chlorides to Gly (1 FA chain) or Lys (1 or 2 FA chains)
 - c) Purify
- 3. Coupling reagents (Gomes et al., 2008 Synthetic Communications 38: 2013-2024)
 - a) React Lys to thionychloride and methanol to generate methyl-protected Lys
 - b) Couple M-Lys to fatty acid and deprotect the Lys group
 - c) Purify

Alternative thermal amidation (Zhang et al 2013 AJAC 4: 445-450)

- a) Incubate fat and Gly (or Lys) to reaction vessel with sodium methoxide at $160^{\circ}C$
- b) Purify

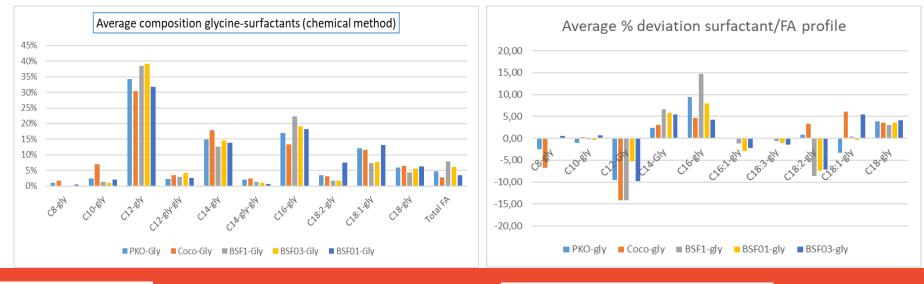
6



INFACT - REACTION YIELDS

Reaction	Ν	Ave. Yield (%)	SD	Remarks	
Fat hydrolysis	22	86,33	10,2	The second	
Schotten Baumann				the second se	
FA-Cl formation		ND		expected 100%	
FA-Cl Gly coupling	13	68,77	12,7	30	
FA-Cl to Lys couplin	4	70,82	8		
Gomes et al. 2008					
Lys-M formation	4	96,8	1,4		
Lys-M to FA couplin _{	2	>95%	nd	yield >100% for 1 reaction	
Thermal amidation					
Gly-FA	14	36,53	24,4	Highly variable 10-80% - also due to purification ster	
Lys-FA	3	38	10,5	Variable 19-45% - brown/sticky product	

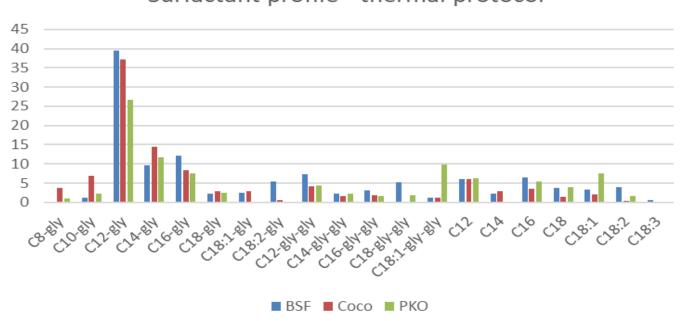
Yield>100% ? -> single bound surfactants, contaminants, use of average FA MW, LC-MS small peaks not taken into account




CASE 1: GLY-SURFACTANT

Profile determined by LC-MS - Schotten Baumann

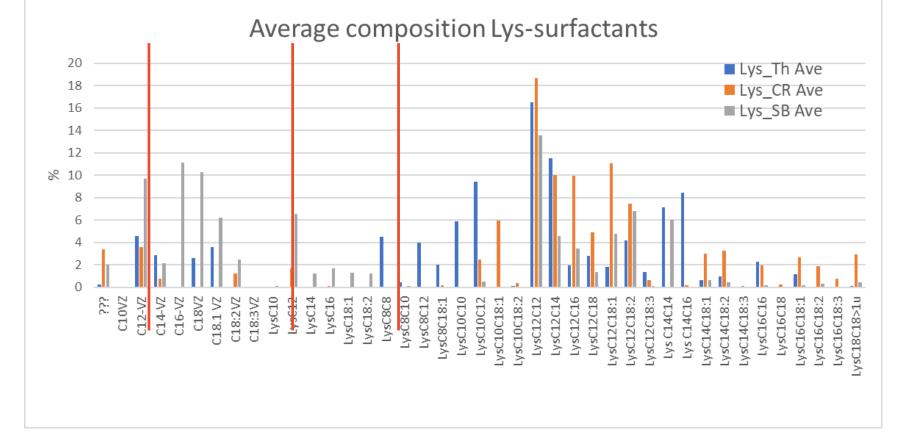
- Gly-surfactants based on PKO, CCO and BSF from 3 sources (N=3)
- Profile of the different sources resemble each other closely
- Compared to initial fatty acid distribution, C12-surfactants are underrepresented and C16-surfactants overrepresented
- Small fraction 2 Gly coupled to C12 and C14
- Approx 5% FFA remaining



CASE 1: GLY-SURFACTANT

Thermal protocol: profile determined by LC-MS:

- C12, 14 and 16 are the main surfactant molecules formed
- 15% FFA remaining, but additional washing reduces FFA further
- Double-bound Gly surfactants are also observed


Surfactant profile - thermal protocol

CASE 2: LYS SURFACTANT

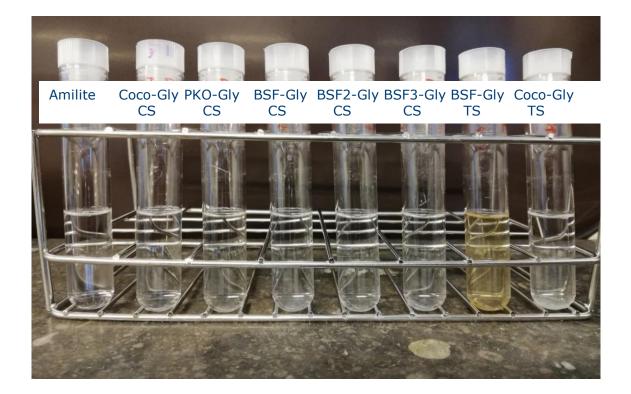
Complex profile Lys-C12C12 main product for all 3 synthesis methods

CASE 2: LYS-SURFACTANT

- Composition
 - Schotten Baumann: many FFA and single bound surfactant
 - Gomes (CR) mostly double bound surfactant
 - Thermal protocol: appr. 15% FFA but less yield compared to Gomes et al.

Product	Thermal	Gomes et al (CR)	Schotten Baumann
	N = 3	N = 6	N = 11
Double bound Lys (%)	87,3	89,0	43,7
Single bound Lys (%)	0,0	1,9	12,1
Free fatty acids (%)	13,6	5,6	42,1
Unknown (%)	0,2	3,4	2,1

11

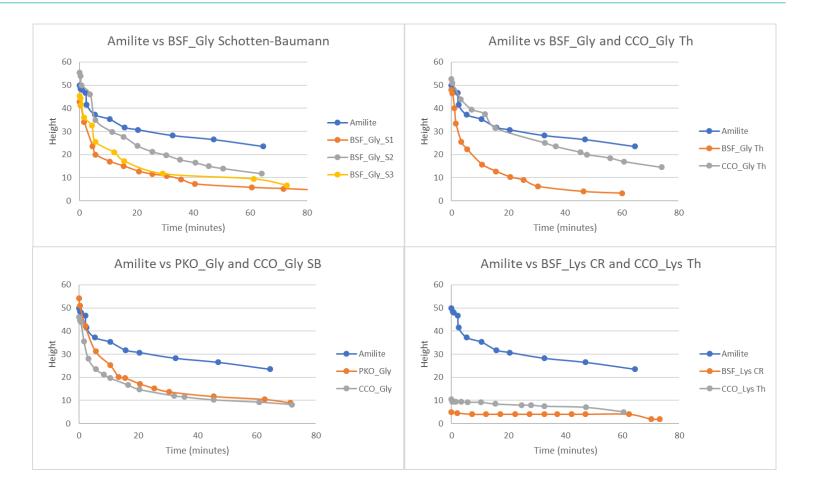


THOMAS

SOLUBILITY

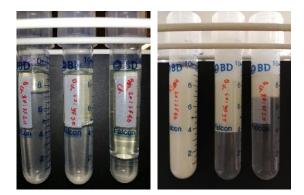
• Neutral pH:

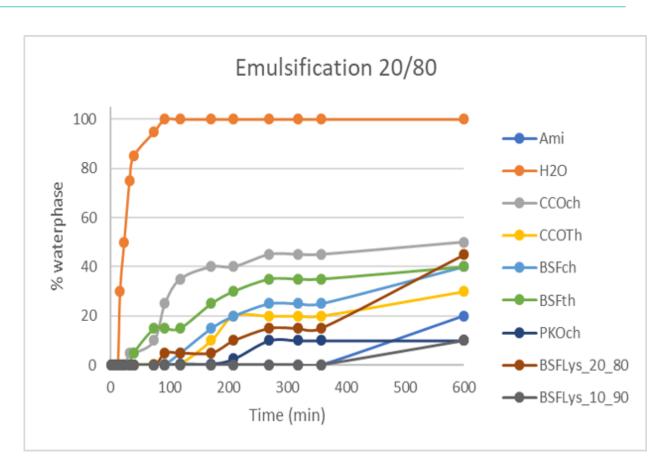
- Solubility is low for all Gly-and Lyssurfactants
- < 1g/L
- Increasing pH
 - Solubility improves
 - Gly-surfactant > Lys-surfactant
 - 10 g/L confirmed at pH > 11
 - At 10 g/L lys-surfactant becomes a gel after a while



FOAMING

- 0,01 M solutions in water were prepared
- 30 mL solution was poured in a cilinder and rotated 5 times
- Foam height was determined at several timepoints
- Amilite largest foam height with gradual decay
- BSF, PKO and CCO_Gly (SB) same inital height but faster decay
- CCO_Th most similar to amilite
- Lys-based surfactants low foaming capacity

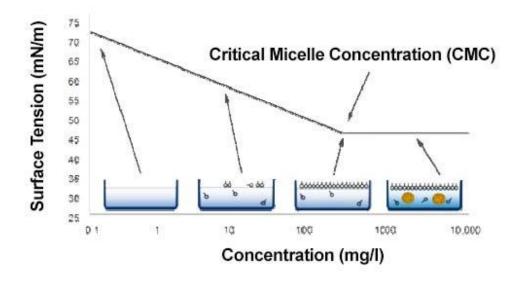

13

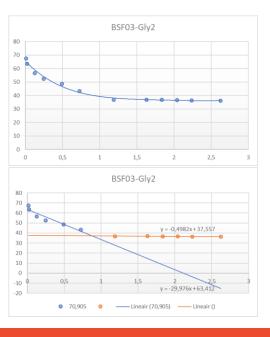


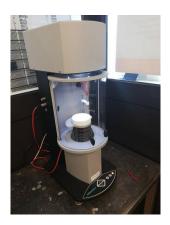
THOMAS

EMULSIFICATION

- Different proportions of water/surfactant (0,01M) and sunflower oil were prepared in tubes: 80:20, 50:50 and 20:80
- Tubes were shaken violently and the height of water was measured and set as percentage of the initial water volume
- Water dephases quickly
- Dephasing only overnight for amilite 20%
- All other surfactants behave similar to each other, but all dephase
 - BSF_Lys (20/80) similar to Gly surfactants
 - BSF_Lys (10/90) stable up to overnight






SURFACE TENSION AND CMC

Surface tension reduction and CMC

- Adding increasing amounts of surfactant to UP water
- Measure surface tension with Du Nouy ring method
- The surface tension reduction stops at the CMC, the concentration at which micelles start forming
- Biolin Attension Sigma 700

SURFACE TENSION AND CMC

Sample	N	Av. minimal surface tension (mN/m)	Av. CMC (mM)
Amilite	2	35,4 (0,1)	3,2 (0,4)
BSF01_Gly1	3	36,8 (0,5)	1,2 (0,2)
BSF03_Gly 1	3	36,6 (0,1)	0,8 (0,6)
BSF_FD_Gly	3	36,4 (0,2)	1,2 (0,3)
PKO_Gly1	3	35,9 (0,6)	0,8 (0,4)
Coco_Gly2	2	36,7 (0,1)	1,1 (0,1)
BSF_Gly_Th	1	36,9	1,1
Coco_Gly Th	1	36,7	1,2
BSF Lys Gomes	4	34,0 (1,0)	0,0152 (0,0004)
BSF Lys SB	1	32,3	0,1
Coco Lys Th	1	31,2	0,05

Min. ST of Gly-surfactants similar and comparable to amilite

CMC Gly-surfactants lower than amilite

Min. ST and CMC Lyssurfactants lower than Gly-surfactants and amilite

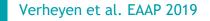
17

IMPLEMENTATION: COSMETICS

- Rinse-off products / showerfoam and showergel:
 - Use as secundary surfactant
 - Foam capacity is sufficient
 - Both solutions are not transparent, but is not an issue —
 - Solubility is an issue for both glycinate and lysinate (old batch)
- Leave-on product / hand cream:
 - Glycine surfactant
 - Initial Gly-surfactant phase separation
 - More pure Gly-surfactant: stable product
 - Further sensory, toxicity, irritation tests needed

Gly

Amilite



CONCLUSIONS

- BSF fats can be used as starting material for the synthesis of amino-acyl surfactant molecules
- Classical chemical synthesis routes have better yields compared to a more green thermal amidation
- The chemical composition of the surfactant molecule mixture resembles the initial fatty acid profile:
 - glycine-surfactant pure products can be obtained
 - lysine-surfactant Gomes approach gives pure but complex product
- Properties similar (solubility and CMC) or less (emulsification and foaming) than amilite (purity?)
- Cosmetics application:
 - optimisation is needed but the glycine-surfactant may be used in hand-cream formulations.
 - lysine-surfactant has not yet been tested with optimal product

http://radius.thomasmore.be/

