

Research Institute of Organic Agriculture FiBL info.suisse@fibl.org, www.fibl.org

AgroVet Strickhof

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Effects of feeding substrate on greenhouse gas emissions during BSF larval development

<u>Christoph Sandrock</u>, C. Walter, J. Wohlfahrt, M. Krauss, S.L. Amelchanka, J. Berard, Florian Leiber, Michael Kreuzer

EAAP Annual Meeting 2019 Ghent, Belgium August 26, 2019

Context: Background and aims

Black soldier fly (BSF, Hermetia illucens) larvae provide:

- conversion of various organic (waste) materials
- a novel protein source for fish and monogastrics feeding

Key for comparative sustainability assessments: ecological footprints of BSF nutrient-cycling from by-products?

Scarce data on insect greenhouse gas (GHG) emissions:

- few species investigated no BSF so far
- feed substrate variation not yet targeted
- just snapshots within developmental cycles assessed

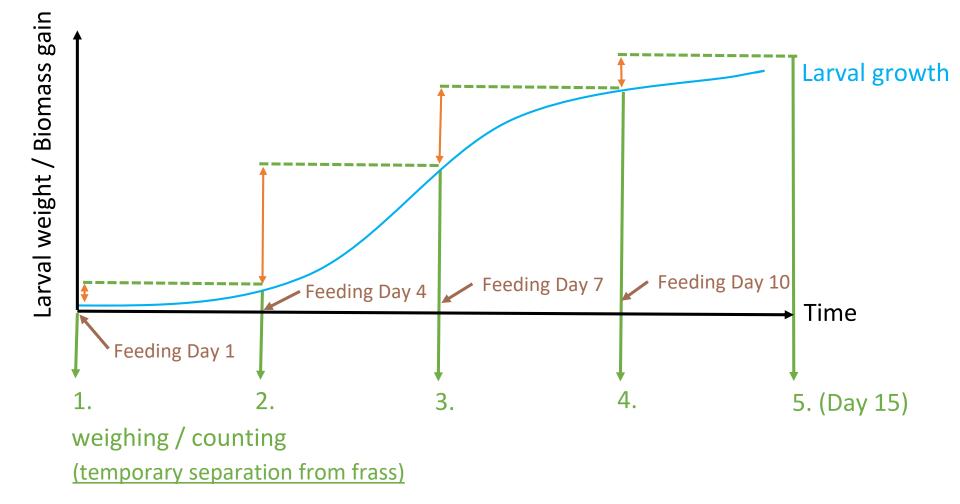
Experimental setup

Respiration chamber settings:

- 27.5°C, 50% rel. humidity
- flow rate 0.1 m³/min

<u>Design:</u>

- 2 different mixed feed substrates
- 3 replicates à 3 x 10'000 larvae each
- 14 days period covering ~4 larval instars (6 days old to >70% prepupae)


Evaluations:

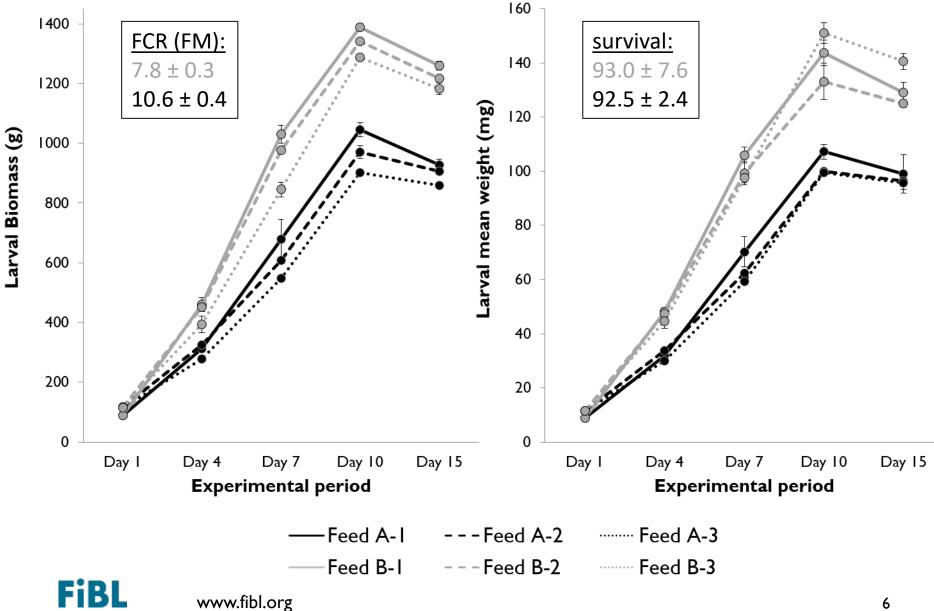
FiBL

- Larval biomass, counting & mean weights (5 occasions)
- Survival rate (end of experiment on day 15)
- CO₂ (every minute in chamber)
- CH₄ (every minute in chamber)
- N_2O (4-8 samples/day of inlet & outlet air streams, GC)

Experimental setup

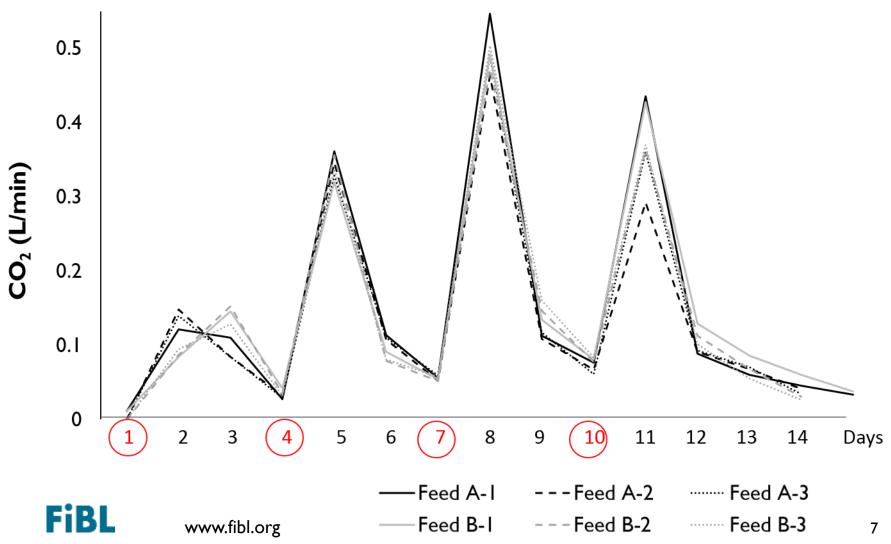
Experimental setup

Basic composition of experimental feed substrates A and B


Ingredient	Feed A	Feed B
Banana discard	30%	10%
Apple pomace	15%	5%
Carrot pomace	15%	5%
Beet pulp	15%	5%
Spent grains (draff)	15%	45%
Pasta discard	10%	30%

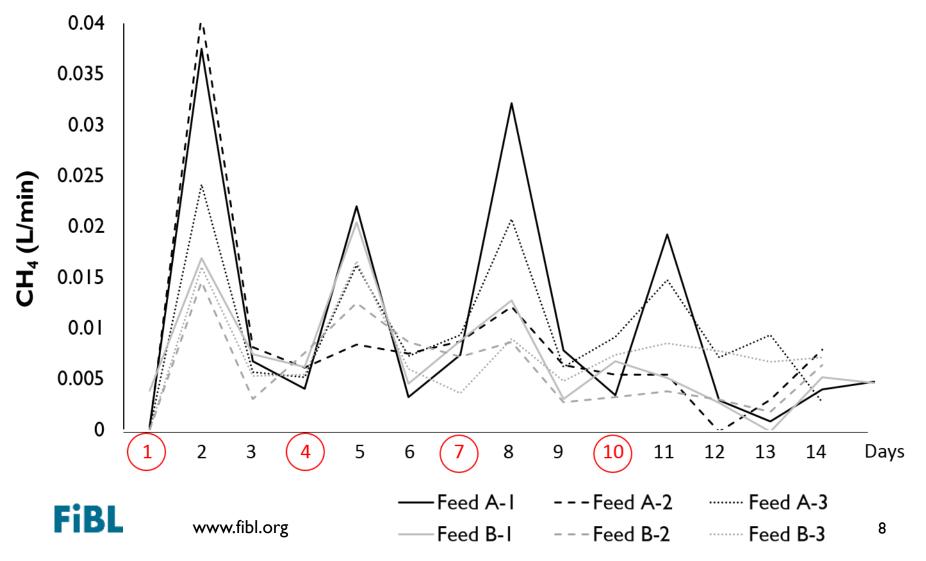
Single batches for each feed, adjusted to 23.7% dry matter

Applied feeding regime				
Day	Portion (FM)			
Ι	1800g			
2	-			
3	-			
4	2500 g			
5	-			
6	-			
7	3000 g			
8	-			
9	-			
10	2200 g			


~16 mg DM/larvae/day overall

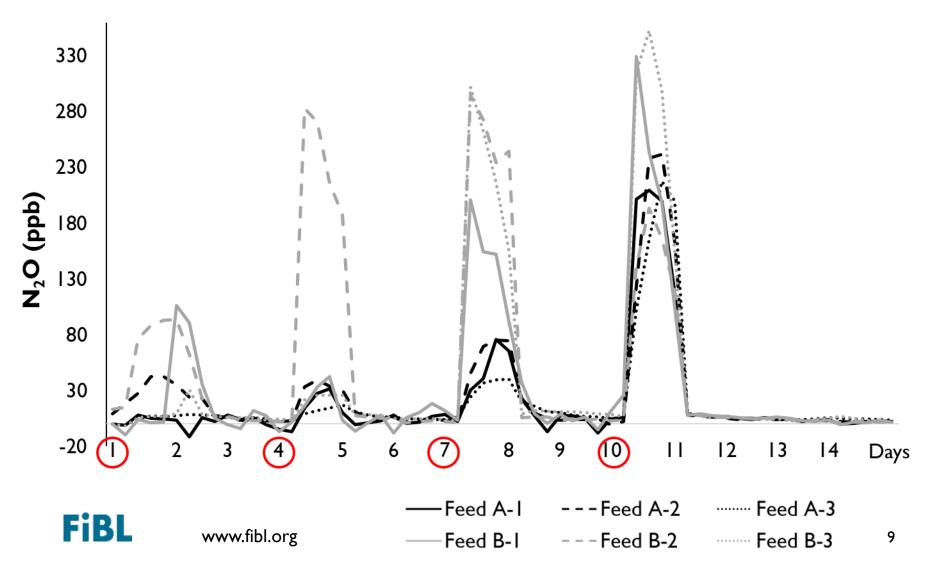
Results: Larval performance

Results : CO₂ - emissions


Patterns (quantities & dynamics) similar for both feeds, sharp peaks (24-48h post-feeding) roughly proportional to provided portions. Unequal balances: higher biomass production for feed B.

Results: CH₄ – emissions (25 CO₂ GWP-equivalents)

Different patterns for both feeds, but not all larval stages,


stronger dynamics over time & variation across replicates (not directly linked to portions). Feed A: higher emissions coupled with lower larval biomass production.

Results: N₂O – emissions (298 CO₂ GWP-equivalents)

Different patterns for both feed substrates during most larval stages, high variation across replicates for early phases.

Feed B: higher larval biomass productivity coupled with higher emissions.

Results: GHG emissions related to BSF larval biomass (gain)

	per kg larvae & day (mean)		per kg biomass gain (mean)	
	Feed A	Feed B	Feed A	Feed B
CO ₂ (g)	205	161	2144	1646
CH ₄ (g)	5	3	49	26
N ₂ O (mg)	3	4	33	45
tot. g CO ₂ eq.	331	237	3379	2309

Conclusions & implications

Feed substrate, feeding events themselves & BSF larval developmental stage strongly impact on specific & overall GHG emissions

CH₄ & N₂O emissions likely related to microbes & type of feed, e.g. fiber-rich, excess nutrients

Neither feed nor frass, but their combination without larvae suggest substantial microbeborne CO_2 emissions (not shown), which are yet systemically linked to BSF rearing

Considerable overall emissions of CO_2 equivalents during BSF fattening - not lower than in conventional monogastric livestock

Harvest prior to 6th larval instar may improve GHG balances - pronounced (lipid?) metabolism in prepupae despite decreasing larval mean weights

Factors such as moisture & substrate depth, altered feeding regimes (timing, portions) or potentially beneficial microbes deserve further exploration

BSFL nutrient-cycling & protein production is not for free! Case-specific views indicated:

Poor feeds may come at high GHG costs despite low productivity, but avoiding surplus trophic levels for high quality feeds may generally be more sustainable

Thank you for your attention! - Questions?

Funding: Swiss Federal Office for Agriculture (FOAG)

Contact

Christoph Sandrock Research Institute of Organic Agriculture, FiBL Ackerstrasse 113 5070 Frick Switzerland Phone +41 62 865 04 19 christoph.sandrock@fibl.org www.fibl.org

<u>Thanks to:</u> M. Leubin, U. Krug, R. Stoz, W. Zollitsch