Improvement of insects with genomic tools: GBS-based genomic prediction in *Nasonia vitripennis*

S. Xia, B.A. Pannebakker, M.A.M. Groenen, B.J. Zwaan, P. Bijma shuwen.xia@wur.nl

Acknowledgements

- Piter Bijma
- Bart Pannebakker
- Martien Groenen
- Bas Zwaan
- Hendrik-Jan Megens
- Richard Crooijmans
- Gabriella Bukovinszkine Kiss
- Jordy Litjens
- Jose van de Belt
- Bert Dibbits
- Kimberley Laport

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641456

Genetic improvement

Genetic improvement

Genetic improvement for insects is not new

- artificial selection
- With the advent of sequencing, genomic prediction becomes possible

The influence of selection on the preferendum of a Chalcid (*Microplectron fuscipennis* Zett.) and its significance in the biological control of an insect pest*

BY A. WILKES Dominion Parasite Laboratory, Belleville, Ontario, Canada

(Communicated by W. R. Thompson, F.R.S.-Received 15 May 1941)

Genetic Improvement of Insects: Fact or Fantasy¹

MARJORIE A. HOY U.S. Forest Service, Northeast Forest Experiment Station, 151 Sanford Street, Hamden, CT 06514

Hoy, 1975

Genomic prediction

- To seek proof-of-principle for the use of genomic prediction in insects
 - how well does it work?
 - what are the obstacles?
- model parasitoid: Nasonia vitripennis

Nasonia vitripennis

- Parasitoid of blowfly pupa
- Short generation interval
- Large family size
- Haplo-diploid sex determination system:
 - haploid males
 - diploid females
- Genetic model system for developmental and evolutionary biology
- Genome has been released (Werren et al. 2010)

Wing morphology and body size traits

- Traits
 - tibia length
 - wing length
 - wing width
 - 2nd moment area
 - wing aspect ratio

Data analysis

Phenotype = genotype + environment

1230 individuals

8639 DNA markers

186 hosts

Accuracy: cross-validation

- Accuracy = Correlation between true breeding value and predicted genomic breeding value
- Randomly divided dataset into 5 groups
 - one group as validation group
 - four groups as training group
- Repeat 50 times

Genetic and host effects

- Sufficient genetic variation
- Apart from aspect ratio, hosts explain more than 50% of phenotypic variation

Accuracies of predicting breeding values

- Accuracy on average: ~0.6
- Bias: a value of 1 means no bias
- Genomic prediction is promising in insects: small genome sizes

Traits	accuracy	bias
Tibia length	0.52	0.96
Wing length	0.60	1.18
Wing width	0.68	1.19
2 nd moment area	0.62	1.07
Aspect ratio	0.55	0.79

- Small body size
 - cannot use the same individual for DNA isolation and selection
- Short life-span
 - need time for genotyping and GEBV estimation

Take home messages

- Genomic prediction in insects is **feasible**
 - sufficient genetic variation
 - promising prediction accuracies
- However, biology of some insects may challenge the use of genomic selection

Accuracy also can be approximated by (Daetwyler et al. 2008):

$$r = \sqrt{\frac{Nh^2}{Nh^2 + M_e}}$$

- *r* = accuracy of GEBV that can be obtained
- *N* = size of the reference population
- h^2 = heritability of the trait
- M_e = number of independent chromosome segments

Generate data

