Effect of sod-seeded legumes on forage composition, steer performance, methane emission and economics

B.M. Kelln¹, J.J. McKinnon¹, G.B. Penner¹, T.A. McAllister², S.N. Acharya², B. Biligetu³, K. Larson¹, and H.A. Lardner^{1*}

¹Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B5; ²Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1; ³Department of Plant Sciences, University of Saskatchewan, Saskatchewan, SK, Canada, S7N 5A8 (*Tel: (306) 966-2147; Email: bart.lardner@usask.ca)

Background

- Old pasture stands need rejuvenation
 - Sod-seeding is a way to improve pasture productivity
- Alfalfa is one of the most important forage legumes grown in western Canada (McMahon et al. 1999)
 - Large concern with frothy bloat grazing monoculture or alfalfa dominant pastures (Majak et al. 2001, Popp et al. 2000, Wang 2012)

Non-Bloat Legumes

IVERSITY OF

- Sainfoin (Onobrychis vicifolia)
 - Condensed tannins (CT) that bind to proteins
- Cicer milkvetch (Astragalus cicer)
 - Reticulate vein patterning of the leaves (Coulman et al. 2000; Williams et al. 2011)
- Unfortunately, research on using these these non-bloat legumes in pasture rejuvenation is negligible (Acharya et al. 2015)
 - Effectively introduce into existing stands
 - Ability to persist in existing stands with grazing

Study Objectives

- To determine forage yield, forage quality and botanical composition of sainfoin and cicer milkvetch when sod-seeded into mixed grass-legume stands
- To evaluate grazing performance, and rumen dynamics in cattle grazing pastures with sod-seeded non-bloat legumes
- To conduct an economic analysis of using non-bloat legume species for pasture rejuvenation

Materials and Methods

• Site Location

- Termuende Research Ranch, Lanigan, Saskatchewan, Canada
- Chernozemic Black Oxbow Soil (Saskatchewan Soil Survey 1992)
- Timeline
 - Seeded 2015

- 3-year grazing study
- -(2016, 2017, 2018)

Study Site

- 30-ha meadow bromegrass-alfalfa (*Bromus riparius-Medicago sativa L.*) pasture
 - 15, 2-ha paddocks

NIVERSITY OF

- Paddocks randomly assigned to 1 of 3 replicated treatments sod-seeded
 - 1. Sainfoin (*Onobrychis viciaefolia*) (SAIN) (n=6)
 - 2. Cicer milkvetch (*Astragalus cicer*) (CMV) (n=6)
 - 3. No sod-seeded legume (CON) (n=3)

Site Establishment (2015)

- Two applications of 1.2 L/ha glyphosate to existing pasture
- Seeded at 19 mm depth
- Sainfoin seeded at 25 kg/ha
- Cicer milkvetch was seeded at 17 kg/ha
- Sod-seeded with an AgroPlowTM

Animal Management

- Experimental animals
 2016: 60 steers
 - 2017: 45 steers
 - 15 ruminally cannulated cows
 - 2018: 45 steers

UNIVERSITY OF SASKATCHEWAN

• 15 ruminally cannulated cows

Data Collection

- 1. Pasture
 - Forage yield & quality
 - Pasture botanical composition (Daubenmire, 1959)
- 2. Steers
 - Estimated dry matter intake (McCartney et al. 2004)
 - Average daily gain
- 3. Ruminal cannulated cows
 - Enteric methane emissions (SF₆ technique) (Johnson et al. 1994)
 - Ruminal short chain fatty acid concentration and ammonia levels
 - Blood plasma urea nitrogen

Statistical Analysis

- Completely randomized design (CRD)
- One way analysis of variance (ANOVA) of the Proc Mixed Model procedure of SAS
- Tukey's multiple range test
 - To determine if treatment means were different and differences were considered significant when P < 0.05 and trends considered when P < 0.10

Site Precipitation (mm)

NIVERSITY OF

Effect of grazing on persistence of sod-seeded non-bloat legumes^z in pasture stand over 4 years

^zCMV = cicer milk vetch; SAIN = sainfoin; CONT = no sod-seeded legume

VERSITY OF

Forage quality of non-bloat legume^z pasture over 3 years

^zCMV = cicer milk vetch; SAIN = sainfoin; CONT = no sod-seeded legume

UNIVERSITY OF SASKATCHEWAN

Agriculture and Agri-Food Canada

Effect of pasture type^z on forage production, forage quality and steer performance over 3 years

Item	CMV	SAIN	CONT	SEM	P-value
Length of grazing season (d)	50	50	50		
Forage production (dry matter)					
Available forage (kg/ha)	4367.40	4810.70	4055.19	723.320	0.74
Residual forage (kg/ha)	2702.20	2599.50	1850.00	390.160	0.39
Dry matter intake (kg/d)	14.40	13.53	11.79	1.665	0.62
Steer performance					
Starting animal weight (kg)	325.49	325.90	328.48	3.949	0.87
Ending animal weight (kg)	378.20	379.10	368.07	5.355	0.35
Average daily gain (kg/d)	1.04	1.04	0.84	0.077	0.16

^zCMV = cicer milk vetch; SAIN = sainfoin; CONT = no sod-seeded legume

a,*b* Means in the same row with different letters differ at the *P* value presented in the last column of this table.

Effect of pasture type on short chain fatty acid concentration, ammonia production, plasma urea nitrogen and enteric gas production

Experimental Treatments ^z							
Item ^y	CMV	SAIN	CONT	SEM	<i>P</i> value		
Rumen fluid concentration							
Total SCFA (mmol)	116.73	107.88	105.29	6.020	0.35		
Acetate (A) (%, total)	68.77	69.23	69.53	0.970	0.86		
Propionate (P) (%, total)	16.46 <i>a</i>	15.56 <i>b</i>	15.56 <i>b</i>	0.207	< 0.01		
Butyrate (%, total)	9.48	9.89	9.74	0.178	0.20		
A:P (%, total)	4.18 <i>b</i>	4.46 <i>a</i>	4.47 <i>ab</i>	0.080	< 0.05		
NH_3-N (mg/dL)	9.07	9.82	9.49	1.210	0.88		
Blood concentration							
PUN (mg/dL)	5.76 <i>a</i>	4.22 <i>b</i>	2.98 <i>c</i>	0.460	< 0.01		
Enteric gas production							
Methane (L/d)	426.35	436.87	419.74	15.659	0.73		
Methane (L/kg DMI)	28.16 <i>b</i>	33.25 <i>a</i>	36.59 <i>a</i>	1.403	< 0.05		

^zCMV = cicer milkvetch; SAIN = sainfoin; CONT = control

Saskatchewan

 y SCFA = short chain fatty acid; NH₃-N = ammonia; PUN = plasma urea nitrogen

a,b Means in the same row with different letters differ (P < 0.05)

Comparison of pasture rejuvenation costs

	CMV	SAIN			
	\$/hectare				
Pre-Seeding Glyphosate	7.68	7.68			
Spraying	29.64	29.64			
Seeding Equipment*	90.16	90.16			
Land rolling	14.10	14.10			
Seed	197.29	182.16			
Total Costs	338.87	323.74			
Expected Years of Use	10	10			
Amortized Over Years of Use	33.89	32.37			
*Agro-Plow (\$37.05/ha) and tractor (\$51.87/ha) rented for					
sod-seeding.					

Net Present Value^z of DM Yield Valuation

^znet present value = estimated value over 10 years based on current standing dry hay price (0.04/kg).

^yCMV = cicer milkvetch; SAIN = sainfoin; CONT = control

UNIVERSITY OF

- Forage quality of sod-seeded non-bloat legume pastures met requirements of growing steer calves
- Cicer milkvetch persisted in the stand better than Sainfoin
- Ruminal fermentation
 - Acetic to propionic ratio was lower (P < 0.05) for CMV (4.18 mM) compared to CON and SAIN (4.47 and 4.46 mM), respectively
 - Enteric methane emissions (L/kg DMI) were lowered for CMV treatment

Summary

- Net present value returns (\$/ha) were increased over 10 year estimate by using sod-seeded non-bloat legume as a rejuvenation strategy
- Study results suggest that sod-seeding non-bloat legumes into mixed pasture is an alternative pasture rejuvenation strategy

✓ Maintained animal performance

 \checkmark Reduced enteric methane emissions

✓ Improved economic returns

Acknowledgments

- Saskatchewan Agriculture Development Fund
- Alberta Beef Producers
- Saskatchewan Forage Council

THANK-YOU