Sugar for dairy cows?

Simulating fodder beet supplementation to reduce environmental pollution

<u>A. Fleming</u>, R.H. Bryant and P. Gregorini Email: Anita.Fleming@Lincoln.ac.nz

Mount Hutt

Agriculture contributes to nearly half of New Zealand's total GHG but also represents 11% of GDP

Source: Greenhouse Gas Inventory 2018

Pasture versus Fodder beet

Chemical composition % dry matter (DM) Water Soluble Carbohydrate **Crude Protein** Neutral Detergent Fibre Acid Detergent Fibre

	Pasture	Fodder beet
		(bulb)
e	11	72.5
	25	7.9
	46	11.7
	18	6.7

New Zealand pastoral supply is seasonal

Season

Identify feeding strategies involving a combination of fodder beet and

ryegrass to improve milk production, animal welfare and reduce

environmental pollutants.

Minimum Total Discomfort

Momentary optimal feed

- I. Rumen Ammonia
- II. Rumen pH
- III. Rumen NDF (rumen fill)
- IV. ME
- V. Hunger

Additive post-ingestive feedbacks

MINDY – model of a grazing ruminant

FB (% intake) HA (kg DM)

0%	18
15%	28
30%	48
60%	

00:00

06:00

12:00

18:00

24:00

Fodder beet did not reduce nitrogen or methane pollution

Rumen pH declined with increased allocation of FB

LINCOLN UNIVERSITY TE WHARE WANAKA O AORAKI

FB increased total discomfort and reduced milk yield

Use of FB to reduce environmental impact of agriculture is limited

Intake of FB needs to exceed 30% of daily intake to reduce enteric methane

and urinary nitrogen excretion

BUT at this level rumen pH was sub optimal

Total discomfort was greater

AND milk production declined

Alternative supplements may be less costly and improve animal performance

