Effect of dietary Guanidinoacetic acid supplementation on growth performance in nursery pigs

Joaquín Morales^{*1}, Meike Rademacher², Ulrike Braun³, María Rodríguez¹, Alberto Manso¹

¹PigCHAMP Pro Europa, SL; Spain
²Evonik Nutrition & Care GmbH; Germany
³AlzChem Trostberg GmbH; Germany

pigChamp[®] pro europa

70th EAAP Annual Meeting 26 – 30 Aug 2019, Ghent (Belgium)

Background

Guanidinoacetate (GAA):

Background

GAA is

- an endogenous amino acid derivative formed from Arg and Gly
- the immediate metabolic precursor for creatine in the body

Creatine is

- essential for rapid energy supply (to restore ATP from ADP)
- stored in skeletal muscle for proper muscle function and growth
- not fully loaded in muscle during early life
- used in humans to improve lean body mass and strength
- scarce in commercial feed (not available from plant ingredients)

Background

CREATINE is

not stable during feed processing (high temperature)

GAA is

- stable during heat treatment
- approved as a nutritional feed additive to supply creatine
- proven to increase growth performance and feed conversion in broilers
- reported to improve lean body mass and performance of finishing pigs

Limited information is available on the role of GAA/creatine in nursery piglets

□ Will GAA act as a source of **creatine** in piglets?

- <u>Absorption</u>: GAA in blood
- <u>Metabolization to creatine</u>: Creatine in blood, muscle & liver
- □ Will piglet **growth performance** benefit from creatine?
- □ At which **dose levels** will GAA benefit piglets?

Materials and Methods

Study location & Animals

Commercial farm CEP (Centro Experimental Porcino, Segovia, Spain)

A total of **336 piglets** (50% entire males; ACMC x Pietrain) were distributed in **56 pens** of 6 piglets / pen (0.30 m2/piglet).

Adaptation period: 5 days (from weaning at 28 days age to day 33)

Study duration: 42 days (14 days prestarter + 28 days starter).

Experimental design

Groups	Dose GAA, %	Nº pens	Nº animals/treat
T1	0	14	84
T2	0.06	14	84
Т3	0.09	14	84
Τ4	0.12	14	84

Diets formulations & nutrient values

Diets	Pre-starter	Starter	
Ingredients			
Corn	29.1	12.0	
Wheat	25.0	30.0	
Soybean meal, 48 %	24.0	25.0	
Barley	9.0	24.6	
Skim milk powder	4.0	-	
Soybean oil	4.0	3.7	
Dicalcium phosphate 22	1.51	1.47	
Corn starch*	0.68	0.70	
Premix ²	0.30	0.30	
CaCO3	0.80	0.89	
L-Lys-HCl	0.56	0.43	
DL-Met, 99 %	0.25	0.17	
L-Threonine	0.23	0.15	
Salt	0.25	0.34	
Choline Chloride (60 %)	0.10	0.08	
L-Valine	0.11	0.02	
L-Tryptophan	0.09	0.05	
L-Isoleucine	0.04	-	
Nutrient content			
NE (MJ/kg)	10.30	10.10	
CP, %	19.7	20.0	
Total Lys, %	1.42	1.30	
SID Lys, %	1.30	1.17	
SID Met, %	0.51	0.42	
SID Met + Cys, %	0.78	0.71	
SID Thr, %	0.82	0.74	
SID Trp, %	0.29	0.26	

*Corn starch partially replaced in T2-T4 by GAA Analysed Arg content = 1.2% in all experimental feeds

Materials and Methods

Controls

- Growth performance: days 0, 14 (end prestarter), 28 and 42 (end nursery)
- **Blood sampling** at day 42 (12 pigs / treatment, 6m/6f), first thing in the morning, from the jugular vein by venipuncture in EDTA tubes.
- **Tissue sampling** at day 42 (6 pigs / treatment, 3m/3f) were sacrificed for muscle (*longissimus dorsi*) and liver sampling.

Statistics

Normal distribution was checked (proc UNIVARIATE of SAS) in all variables and outliers detected (Cook's distance measure) prior to analysis.

Growth performance data: Pen of 6 piglets was the experimental unit. Data were analysed using the proc GLM of SAS. Initial BW was included as covariate.

Blood & tissue data: The piglet was the experimental unit. Data were analysed using the proc GLM of SAS.

MAIN RESULTS

- 1. DIET ANALYSIS
- 2. GROWTH PERFORMANCE
- 3. CREATINE SERUM, MUSCLE & LIVER CONTENT

Feed analysis

	Pre-starter feeds			Starter feeds				
Content (mg/kg)	T1 Control	T2 0.06%	T3 0.09%	T4 0.12%	T1 Control	T2 0.06%	T3 0.09%	T4 0.12%
Intended value:								
GAA*	<1	586	879	1172	<1	586	879	1172
Analysed values:								
GAA	<1	727	996	1230	<1	571	779	1150
Creatine	26	<25	<25	<25	-	-	-	-

*Calculated from GAA assay in test article CreAMINO®: 97.7%

Body weight (kg)

P = 0.054

Average daily gain (g/day)

Average daily feed intake (g/day)

Feed conversion ratio (g/g)

Blood & muscle analysis (Day 42)

Parameter	T1 Control	T2 0.06% GAA	T3 0.09% GAA	T4 0.12% GAA	SEM ¹	P-values	
Blood content							
GAA (μmol/L)	7.93	9.15	9.33	9.66	0.625	0.22	
Creatine (mg/dL)	1.81	2.50	2.49	2.16	0.253	0.18	
Creatine content (mg/kg) in muscle & liver							
Muscle	5759.3	5704.0	5555.2	5830.0	84.91	0.16	
Liver	130.3 ^b	276.0 ^{ab}	394.8 ^a	339.2 ^{ab}	65.64	0.05	

¹Standard error of mean, n=12 in blood analysis and n=6 in muscle&liver analysis

Conclusions

From the present experiment, we can draw the following conclusions:

- Feed supplementation with 0.12% GAA improved ADG in prestarter and whole nursery periods. In consequence, final BW of pigs was increased by 7.4% compared with the negative control group.
- 2. 0.12% GAA improved FCR in prestarter and after 28d.
- 3. Efficient absorption (numerically higher GAA in blood) and metabolization (elevated liver creatine) of supplemented GAA.
- 4. GAA is an efficient source of creatine in nursery piglets.
- 5. The recommended dose range is between 0.09 and 0.12 % GAA in feed.

joaquin.morales@pigchamp-pro.com

