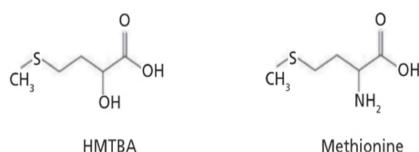
Dietary hydroxyl-methionine supply in pigs: associated changes in muscle biological processes

<u>F Gondret</u>*, N Le Floc'h*, D.I. Batonon Alavo[#], Y Mercier[#], MH Perruchot* and B Lebret*

*Pegase, INRA, Agrocampus-Ouest, 35590 Saint-Gilles, France #ADISSEO France SAS, 03600 Commentry, France

florence.gondret@inra.fr

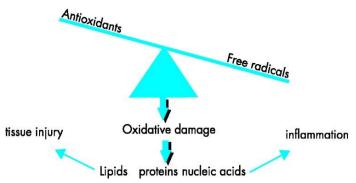
EAAP 2019, session 7 – Nutrition - Dietary functional components : effects on animal performance, health and environment


Methionine (Met):

The 3rd limiting AA for growth in pigs fed cereal & soya based diets => Added to diet in the form of DL-Met or HMTBA

Met: a methyl donor

- \Rightarrow precursor (trans-sulfuration pathway) of Cysteine (Cys)
- \Rightarrow part of glutathione (**GSH** = Glu Cys Gly), the main intracellular nonenzymatic antioxidant
- A functional ingredient with benefits in the control of oxidative stress, health, and meat quality (oxidative stress occurs all along animal production chain including the transformation of muscle into meat)



dl-2-hydroxy-4methylthio butanoic acid

Oxidative stress

Dietary Met short-term deficiency in young pigs

- ⇒ protein synthesis, with skeletal muscle identified as the main altered compartment (compared with carcass, blood, liver and intestine)
- \Rightarrow or 7 AA concentrations in muscle proteins (= the composition of growth)
- \Rightarrow Altered glucose metabolism and 7 lipid content in the body
- \Rightarrow \bowtie GSH content and 7 antioxidant enzyme activities

(Conde-Aguilera et al., 2010; 2016; Castellano et al., 2015)

- Dietary Met long-term deficiency in growing-finishing pigs
- \Rightarrow Met concentration in muscle protein was unchanged
- \Rightarrow Increased glycolytic potential in muscle
- \Rightarrow Pork quality traits (pH, drip loss and color) were unchanged

(Conde-Aguilera et al., 2014)

- Few studies addressed excess in dietary Met (relative to growth requirements)
- ⇒ L-Met supplemented diet fed to pigs during the whole growing-finishing period: 7 glutathione (GSH) 7 pHu, \lor drip loss (Liu et al., 2017)

 \Rightarrow Diet x 5 in Met (HMTBA) during the last 14 d before slaughter:

- No effects on growth rate, BW at slaughter and muscle weight 7 glutathione (GSH)
- intramuscular lipid content ע
- ↗ pHu, ↘ drip loss, ↘ lightness (Lebret et al., 2018)
- => positive effects on pork quality traits

Mechanisms whereby excess dietary Met affected muscle properties and meat quality ?

AGRO

• Experimental design

AGRO

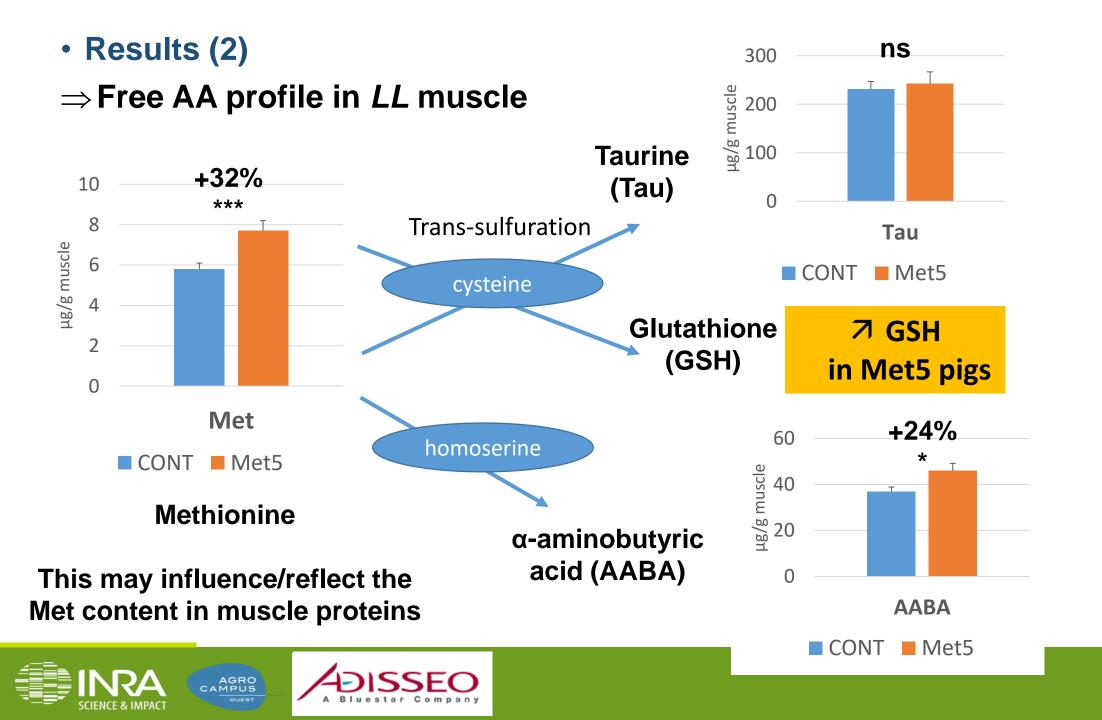
Diets were formulated with maize, wheat & soybean meal

 \Rightarrow 30 pigs fed either:

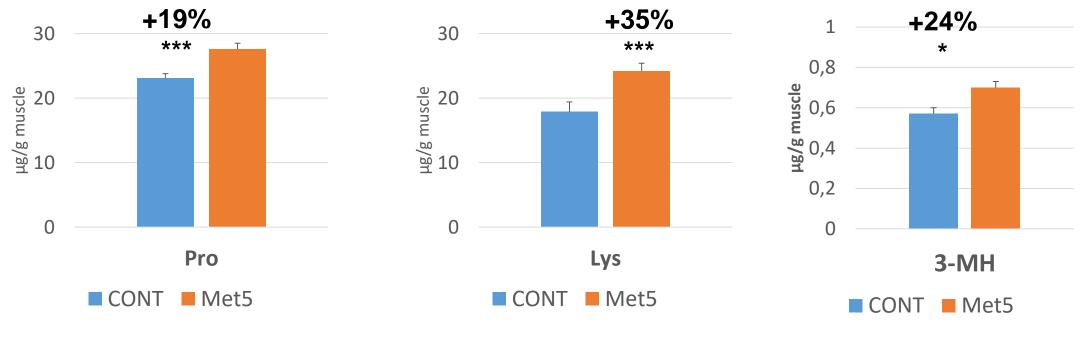
- control diet (Met = 0.22% = growth needs)
- Met-supplemented diet (1.10% Met = 5 fold the growth needs)

Last 14 days before slaughter

	7	70 d 70		kg		ر المحمد المحم
		Standard growing diet		Standard finishing diet		CTRL (standard NRC)
Iso-energy & iso-nitrogenous diets						Met5 (x 5 fold)
Composition		CTRL	Me	et5		
Protein	%	13.7	13	.6		
Fat	%	5.82	5.7	79		<i>n</i> = 15 pigs
Cellulosis	%	2.59	2.5	54		/ diet
Net energy	MJ/kg	10.38	10.	44		/ diet
dLys	%	0.73	0.7	73		
dMet*	%	0.22	1.3	10	*added as DL-HMTBA	
dMet+Cys	%	0.45	1.3	33		



• Results (1)


 \Rightarrow Muscle composition at market weight

	CONT	Met5	P diet
BW, kg	125 <u>+</u> 2	123 <u>+</u> 1	0.55
Lean meat content, %	58.9 <u>+</u> 0.6	58.9 <u>+</u> 0.4	0.91
<i>Longissimus</i> muscle (LL) Weight, g	911 <u>+</u> 36	879 <u>+</u> 31	0.47
GSH content , nM/mg proteins	754 <u>+</u> 107	867 <u>+</u> 121	0.001
Glycolytic potential, µM eq. lactate/g	151 <u>+</u> 19	139 ± 20	0.06
Lipid content, %	1.7 <u>+</u> 0.1	1.4 <u>+</u> 0.1	0.07
Ultimate pH, units	5.55 <u>+</u> 0.02	5.66 <u>+</u> 0.04	0.04

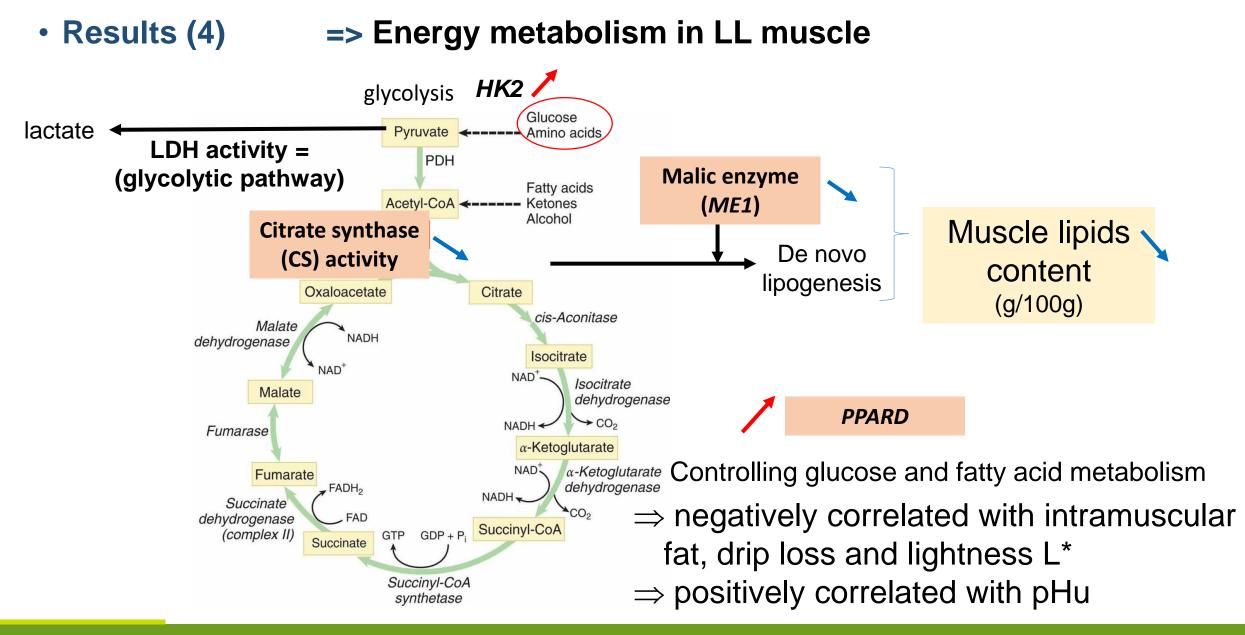
- Results (2)
- \Rightarrow Free AA profile in *LL* muscle

Proline

3-Methyl-histidine

roles in anti-oxidative reactions

↗ protein degradation ?



• Results (3)

\Rightarrow Protein degradation pathway in LL muscle

Gene expression, mRNA level	CONT	Met5	P diet	
CTSD (cathepsin D)	0.83 <u>+</u> 0			
PSMD1 (proteasome)	0.78 <u>+</u> 0	MURF1: cleaves actin and myos muscle proteins during cataboli situations		
CAPN1 (micro calpain)	0.63 <u>+</u> 0			
CAPN2 (milli calpain)	0.00	Situations		
>Autophagy pathway		OTUD1 : a protease that negates the action of ubiquitin ligases		

Gene expression, mRNA level	CONT	Met5	P diet
MURF1 (= E3 ubiquitin ligase 1)	0.79 <u>+</u> 0.03	1.15 <u>+</u> 0.12	0.008
OTUD1	0.53 <u>+</u> 0.10	1.08 <u>+</u> 0.22	0.03
UBE2M (E2 ubiquitin conjugating	0.81 <u>+</u> 0.02	<i>0.74 <u>+</u> 0.02</i>	0.07
enzyme)			
FBXO32 (atrogin)	0.95 <u>+</u> 0.10	1.33 <u>+</u> 0.21	0.12
NRA CAMPUS ADISSEO			

Conclusions

Extra Met dietary supply (growth requirements x 5) was associated with:

Changes in free AA concentrations in muscle, with increased Met & Pro.

 \Rightarrow This may participate to cope with oxidative stress

- 3-MH content was greater (& Lys content), suggesting increased muscle protein degradation
- => Autophagy molecular process (gene expression levels) was also affected by extra Met supply.
- Decreased oxidative metabolism and greater expression level of PPARD, a pivot transcription factor
- => These might participate to modulate pork quality traits such as intramuscular fat content, drip loss and color

