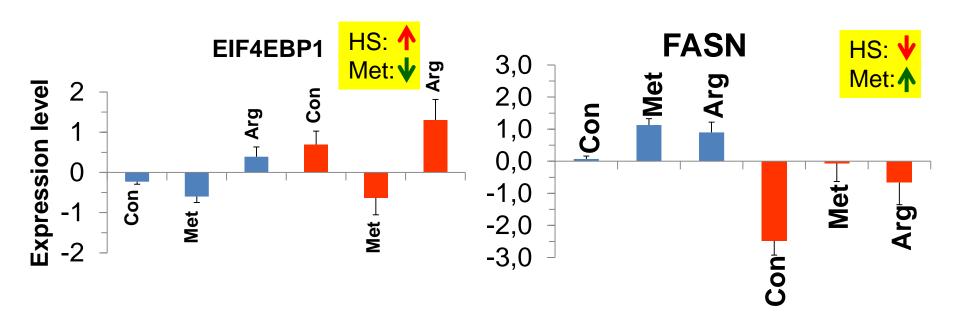


Performance of Heat-Stressed Dairy Goats Supplemented with Rumen-Protected Methionine

N. Mehaba, W. Coloma, <u>A.A.K. Salama</u>, E. Albanell, X. Such, G. Caja

Ruminant Research Group (G2R) Universitat Autònoma de Barcelona, Barcelona, Spain

Introduction: Effects of heat stress (HS)


Responses of dairy goats to HS							
Rectal temperature	+0.5 to +1.2°C						
Respiratory rate	+240 to 360%						
Water consumption	+200 to 300%						
Feed intake	-20 to 30%						
Milk yield	-7 to 15%						
Milk composition	-5 to 12% in fat and protein contents						

Feed intake
Protein intake
Amino acid intake

Why did we choose Methionine (MET)?

Introduction: Effects of methionine

- Limiting factor and increases milk protein (Schwab, 2011).
- Methyl donor (methylation of DNA, RNA, histone).
- Regulates gene expression in HS mammary cells (Salama et al., 2019):

Hypothesis & Objectives

- Supplementation with rumen-protected would improve milk composition (protein and fat) under HS conditions.
- The effect of methionine supplementation in HS goats on:
 - Thermo-physiology: Rectal temperature & respiratory rate.
 - **Performance**: Intake, milk yield, milk composition.

Animals & Treatments

Ambient conditions	Diets					
	CON	MET 2.6 g/d (Smartamine)				
TN	TN-CON	TN-MET				
HS	HS-CON	HS-MET				

- 8 multiparas goats: replicated 4 × 4 Latin Square
- **TN**: 19.4 ± 0.02 °C; humidity $58 \pm 5\%$; **THI = 65**
- **HS**: Day: 35.0 ± 0.5 °C; 45 ± 5 % humidity; **THI = 83**

Night: 28.0 ± 0.5 °C; 45 ± 5 % Humidity; **THI = 76**

Measurements & Sampling

- DM intake and water consumption: Daily.
- Rectal temperature & Respiratory rate: Daily at 0800, 1200, 1700 h.
- Milk yield: *Daily*.
- Milk Composition: Weekly, MilkoScan.
- Somatic cell count: Fossomatic.
- Body weight: Start & end of each period.

Statistical Analyses

PROC MIXED of SAS v.9.4 (repeated measurements):

- Fixed effects:
 - Ambient temperature (TN vs. HS).
 - Supplementation (CON vs. MET).
 - Period (1 to 4).
 - Interactions among fixed effects.
- Random effects:
 - Animal.
 - Residual error.

Physiological responses

Rectal temperature and respiratory rate under thermal-neutral **(TN)** or heat stress **(HS)**, without supplementation **(CON)** or supplemented with methionine **(MET)**

Item	TN		HS		ECM	Effect (P <)		
	CON	MET	CON	MET	ESM	Temp	MET	$T \times M$
Rectal Temperat	0.001	0.19	0.21					
08:00	38.4	38.4	39.3	39.2	0.04		-0.06°(
12:00	38.6	38.6	39.7	39.6	0.04		-0.090	
17:00	38.8	38.8	40.0	39.9	0.04		-0.11°(
Respiratory rate, r/min						0.001	0.25	0.23
08:00	28	28	98	92	2		-6 r/mi	n
12:00	32	32	140	135	2		-5 r/mi	n
17:00	35	36	162	161	2			

Productive responses

Feed intake, body weight variation, and milk production under thermal-neutral **(TN)** or heat stress **(HS)**, without supplementation **(CON)** or supplemented with methionine **(MET)**

supplementation (CON) or supplemented with methionine (MEI)									
Item		TN		HS			Effect (P<)		
		CON	MET	CON	MET	SEM	Temp	MET	T × M
Intake, kg/d	-10%	2.40	2.31	2.08	2.17	0.09	0.001	0.96	0.11
Water, kg/d	+43%	4.7	4.4	6.3	6.7	0.5	0.001	0.77	0.16
BW, kg/21d	-69%	0.10	0.29	-0.37	0.04	0.17	0.04	0.09	+90%
Milk, kg/d	-8%	2.04	1.98	2.03	2.18	0.15	0.14	0.52	0.12
FCM 3.5%, kg/d		2.43	2.45	2.09	2.40	0.17	0.01	0.03	+15%

Productive responses

Milk composition under thermal-neutral (TN) or heat stress (HS), without supplementation (CON) or supplemented with methionine (MET)

memorine (MET)										
Item		TN			HS		Effect (P<)			
	С	ON	MET	CON	MET	SEM	Temp	MET	T × M	
Fat, %	4%	+0	.08	4 +0	.19 5	0.11	0.001	80.0	0.50	
Protein, %	0%	3.59	3.60	3.24	3.25	0.10	0.001	0.84	0.97	
Casein, %	0%	3.27	3.34	2.98	3.00	0.10	0.001	0.20	0.41	
	.5%	4.47	4.43	4.33	4.35	0.05	0.001	0.54	0.21	
SCC, log ₁₀		5.54	5.70	5.73	5.82	0.20	0.21	0.31	0.77	

Conclusions

- Heat stress negatively affected milk composition (fat, protein, lactose).
- MET supplementation tended to reduce BW losses under HS conditions.
- MET supplementation tended to improve milk fat content with no effect on milk protein.
- Probably one single amino acid is not enough to improve milk protein in HS animals.

Thank you for the attention!