

Different models for estimation of litter size variability phenotypes

Jan Dobrzański

E. Sell-Kubiak, T. Szwaczkowski, H.A. Mulder, E.F. Knol

LITTER SIZE

Crucial trait for pig breeders

In Large White differences up to 20 piglets

High variability affects profitability and animal welfare

VARIABILITY PHENOTYPES

Accurate phenotypes of variability are needed

 Formerly variance, standard deviation or genetic coefficient of variation were used as phenotypes

Litter size variability can be explored with residual variance

RESIDUAL VARIANCE

TNB = FYS +
$$animal + p + e$$

 Gathers the environmental effects that can't be measured by known factors

Has a genetic component

Can be used to increase uniformity of traits

AIM

To define and compare new phenotypes for variability of total number born (varTNB) in Large White using the residual variance.

DATA

- 246 799 observations of litters from 1998-2014
- 53 804 Large White sows
- Average litter size 13.57 (SD 3.45)
- > 3 piglets
- 2 < observations per sow

STATISTICAL MODELS

BM: TNB = FYS + animal + p + e

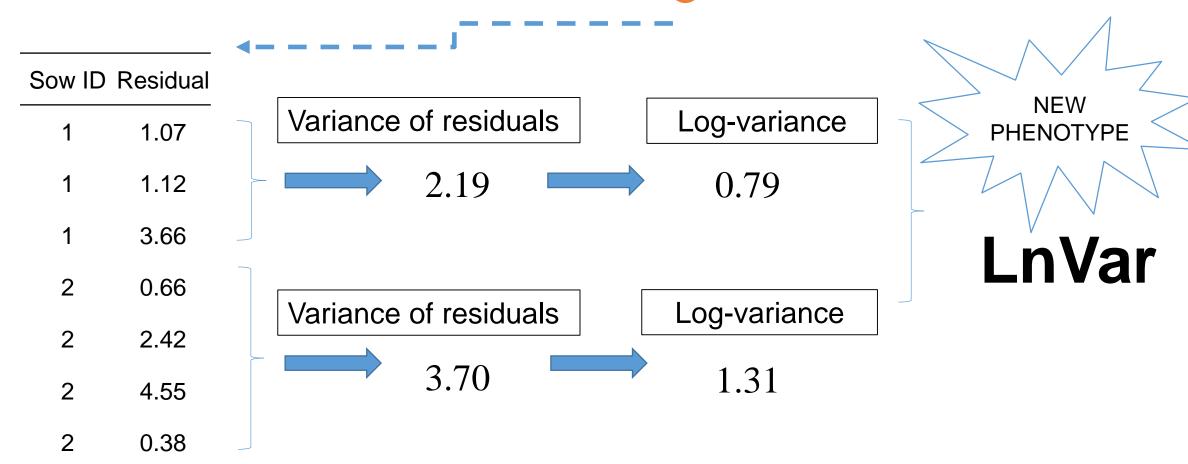
BMP: TNB = FYS + parity + animal + p + e

RRM: TNB = FYS + parity* + animal* + p* + e

*with 3rd order Legendre polynomials

DEFINING THE NEW PHENOTYPES

TNB = FYS +
$$animal + p + e$$



THREE NEW PHENOTYPES

- LnVarBM
- LnVarBMP
- LnVarRRM

STATISTICAL ANALYSIS

$$LnVar = FYS_1 + animal + e$$

VARIANCE COMPONENTS

Estimate	LnVarBM	LnVarBMP	LnVarRRM
Additive genetic	0.026 (0.004)	0.028 (0.004)	0.028 (0.004)
Residual	1.23 (0.01)	1.29 (0.01)	1.26 (0.01)
Heritability	0.021 (0.004)	0.021 (0.004)	0.021 (0.004)

LnVar's have genetic component, thus can be used in selection

GENETIC CORRELATIONS

	LnVarBM	LnVarBMP	LnVarRRM
LnVarBM	_	0.98 (0.008)	0.95 (0.008)
LnVarBMP	0.83 (0.001)	-	0.98 (0.008)
LnVarRRM	0.82 (0.001)	0.93 (0.008)	-

GENETIC CORRELATIONS

Effect		LnVarBM	LnVarBMP	LnVarRRM
Additive genetic	mTNB	0.62 (0.06)	0.58 (0.06)	0.57 (0.06)

Increase in litter size will result in increase in it's variability

GENETIC COEFFICIENT OF VARIATION

Estimate	LnVarBM	LnVarBMP	LnVarRRM
GCV _{SDe}	0.081	0.083	0.083

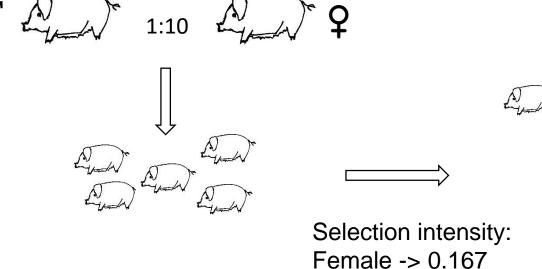
Litter size variability can be reduced by 8% of residual variance SD per generation

SIMULATION ANALYSIS

Male -> 0.0167

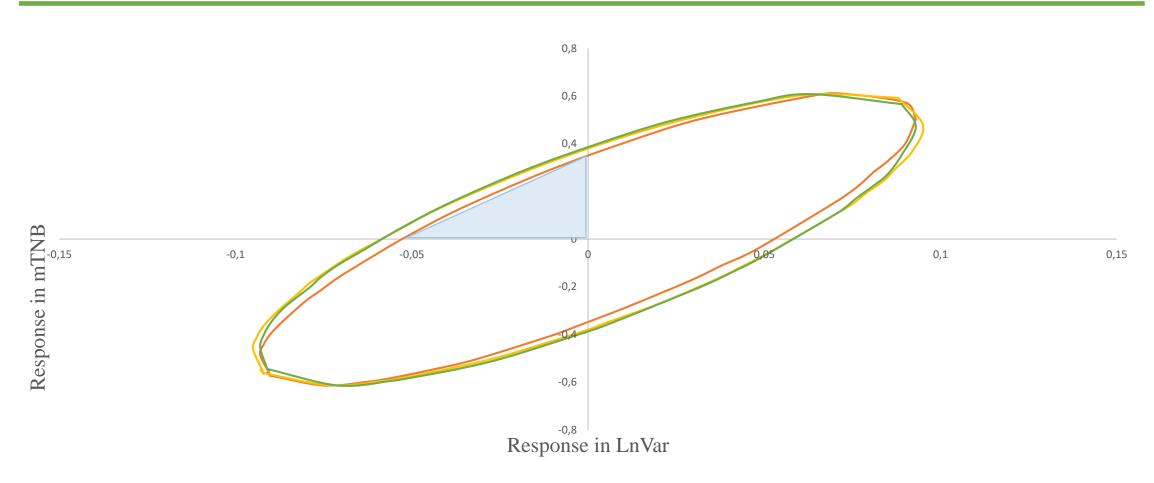
ASSUMPTIONS

Breeding schemes based on variance components from LnVar's



Selection index based on:
own performance, BLUP,
half and full-sib information

ELLIPSE OF RESPONSE



With appropriate selection index litter size can increase with decrease in it's variability

CONCLUSIONS

LnVar's for TNB are low heritable

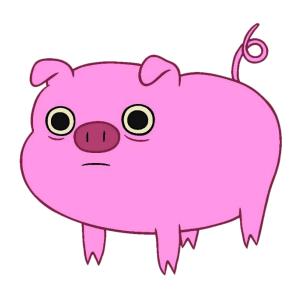
Created phenotypes are genetically the same trait

Litter size and it's variability is positively correlated

It's possible to varTNB and TNB

Researches financed by Polish National Science Centre Grant: SONATA 2016/23/D/NZ9/00029

THANK YOU FOR YOUR ATTENTION



Bivariate analysis between LnVar and mTNB

$$\begin{bmatrix} LnVar\\ mTNB \end{bmatrix} = \begin{bmatrix} X_{Ln} & 0\\ 0 & X_{mTNB} \end{bmatrix} \begin{bmatrix} b_{Ln}\\ b_{mTNB} \end{bmatrix} + \begin{bmatrix} Z_{Ln} & 0\\ 0 & Z_{mTNB} \end{bmatrix} \begin{bmatrix} a_{Ln}\\ a_{mTNB} \end{bmatrix} + \begin{bmatrix} e_{Ln}\\ e_{mTNB} \end{bmatrix},$$

where **LnVar** is a vector of the analyzed LnVar obtained from a certain model (LnVarBM, LnVarBMP, or LnVarRRM); mTNB is a vector of observation on mean TNB per sow; \mathbf{b}_{Ln} and **b**_{mTNB} are vectors of fixed effects of farm_year_season of the first farrowing on LnVar and mTNB; a_{Ln} and a_{mTNR} are vectors of random additive genetic effects on LnVar and mTNB and e_{LnVar} , e_{mTNB} are residuals.

Trivariate analysis between LnVar's

$$\begin{bmatrix} LnVarBM \\ LnVarBMP \\ LnVarRRM \end{bmatrix} = \begin{bmatrix} X_{BM} & 0 & 0 \\ 0 & X_{BMP} & 0 \\ 0 & 0 & X_{RRM} \end{bmatrix} \begin{bmatrix} b_{BM} \\ b_{BMP} \\ b_{RRM} \end{bmatrix} + \begin{bmatrix} Z_{BM} & 0 & 0 \\ 0 & Z_{BMP} & 0 \\ 0 & 0 & Z_{RRM} \end{bmatrix} \begin{bmatrix} a_{BM} \\ a_{BMP} \\ a_{RRM} \end{bmatrix} + \begin{bmatrix} e_{BM} \\ e_{BMP} \\ e_{RRM} \end{bmatrix},$$

where LnVarBM, LnVarBMP, LnVarRRM are vectors of the analyzed LnVar obtained from a certain model; **b**_{RM} \mathbf{b}_{RMP} and \mathbf{b}_{RRM} are vectors of fixed effects of farm_year_season of the first farrowing on certain LnVar; \mathbf{a}_{BM} , \mathbf{a}_{BMP} , and \mathbf{a}_{RRM} are vectors of random additive genetic effects on LnVar and \mathbf{e}_{BM} , $\mathbf{e}_{\mathrm{BMP}}$ and $\mathbf{e}_{\mathrm{RRM}}$ are residuals on LnVar.