Gut microbiota and feather pecking

Jerine van der Eijk^{1,2}, Marc Naguib¹, Bas Kemp², Aart Lammers², Bas Rodenburg^{2,3}

¹Behavioural Ecology ²Adaptation Physiology, Wageningen University and Research ³Department of Animals in Science and Society, Utrecht University

Feather pecking

Feather pecking = damaging behaviour

 \downarrow Animal welfare

 \downarrow Productivity

Alternative solutions!

2

Gut microbiota

Brain development and function

(Cryan and Dinan, 2012;Collins et al., 2012)

- Neural: vagus nerve
- Immunological: cytokines
- Metabolic: tryptophan metabolism, short chain fatty acids (SCFA's), neurotransmitters

Gut microbiota - Rodents

(Cryan & Dinan, 2012 and Collins et al., 2012) 4

Gut microbiota - Poultry

Germ-free quails

Anti-, pre- or probiotics Microbiota transplantation

Behaviour: fearfulness and activity

(Kraimi et al., 2018;2019; Parois et al., 2017) 5

Gut microbiota – Feather pecking

Aim

Identify effects of gut microbiota on feather pecking

1) Do feather pecking selection lines differ in gut microbiota composition?

- Characterize behavioural characteristics and microbiota composition of HFP and LFP lines

Behavioural characteristics: HFP vs. LFP

(Kops et al., 2017; van der Eijk et al., 2018; 2019) 8

Gut microbiota composition

Discussion

HFP birds had more active behavioural responses (de Haas et al., 2010; Kops et al., 2017; van der Eijk et al., 2018; 2019) \rightarrow suggests \downarrow fearfulness (Forkman et al., 2007)

Feather pecking usually related to \uparrow fearfulness (Rodenburg et al., 2013)

Behavioural responses might be related to activity level

HFP birds higher locomotor activity in home pen (kjaer et al., 2009)

Altered intrinsic motivation (Toates 1986) → leads to more locomotion

Discussion

Microbiota composition influenced by many factors (for example, genotype and diet) (Sport et al., 2011)

Consistent findings across studies (birkl et al., 2018; van der Eijk et al., 2019) \rightarrow strong influence of genotype?

Differences might arise because of feather eating \rightarrow HFP birds ingest more feathers (Harlander-Matauschek and Bessei 2005; Harlander-Matauschek and Hausler 2009) \rightarrow feathers in diet altered microbiota composition \uparrow clostridia (Meyer et al., 2012)

Conclusion

Divergent selection on feather pecking (in)directly affects behavioural responses and microbiota composition

- HFP birds more active behavioural responses, reduced fearfulness, compared to LFP birds
- HFP birds more clostridiales, less lactobacillus compared to LFP birds

Identify effects of gut microbiota on feather pecking

1) Do feather pecking selection lines differ in gut microbiota composition? - YES

2) Does gut microbiota influence the development of feather pecking?

Microbiota transplantation

100 years

Microbiota transplantation pools

Treatment

Timeline

Manual restraint test

0-1w

Treatment

During treatment (immediate effects)

(P < 0.1) 19

After treatment (long-term effects)

(P < 0.1) 20

Timeline

0-1w Treatment

Gut microbiota composition – Caecum of HFP

2 weeks of age LFP Control Axis (1.46%) Porphyromonadac Ruminialostridium 5 Eisenbergiella Hydrogenoanaerobacterium Partial RDA Control Phascolarctobacterium Barnesiella Alistipes HFP **HFP** 0. Partial RDA Axis (6.34%) -1.0 1.0 (P < 0.01)22

Microbiota affects brain functioning

Brain development < 2 weeks, synapse formation (Atkinson et al., 2008)

Microbiota affect brain development in rodents (Dinan and Cryan, 2017)

- Alters morphology of amygdala (regulation of anxiety and fear) (Saintdizier et al., 2009; Luczynski et al., 2016)
- Alters expression of brain-derived neurotrophic factor (gene involved in synaptic plasticity) in amygdala (Arentsen et al., 2015)

HFP birds more active behavioural responses (de Haas et al., 2010;

Kops et al., 2017; van der Eijk et al., 2018; 2019)

During treatment

HFP birds adopt behaviour of donors

<u>After treatment</u> LFP birds do not adopt behaviour of donors

Immediate effects on behaviour in HFP line

HFP line more responsive immune system (Buitenhuis et al., 2006; van der Eijk et al., 2019)

Respond more strongly to microbiota \rightarrow cytokines \rightarrow alter serotonergic and dopaminergic neurotransmission (Miller et al., 2013)

 \rightarrow alter behavioural responses

Long-term effects on behaviour in LFP line

LFP microbiota \uparrow relative abundance of *Lactobacillus* (Birkl et al., 2018; van der Eijk et al., 2019)

Lactobacillus increased activity and reduced anxiety in rodents (Bravo et al., 2011; Liang et al., 2015; Liu et al., 2016)

<u>Note</u>: Microbiota composition did not differ between treatments in LFP line

Homologous transplantation

Active responses (\downarrow fearfulness) (Forkman et al., 2007)

Feather pecking related to \uparrow fearfulness

(Rodenburg et al., 2004; de Haas et al., 2014)

Note: No effects on tonic immobility duration

→ innate fearfulness (Forkman et al., 2007)

Feather pecking related to \downarrow fearfulness in selection lines (Kops et al., 2017; van der Eijk et al., 2018)

Conclusion

Effects of microbiota transplantation are genotype dependent:

- Immediate effects in HFP line, birds adopt behaviour of donors
- Long-term effects in LFP line, birds do not adopt behaviour of donors

Microbiota transplantation affects behavioural responses, where homologous transplantation reduces fearfulness

Microbiota could influence the development of feather pecking

Take home messages

- Divergent selection on feather pecking affects behavioural responses and microbiota composition
- Effects of microbiota transplantation are genotype dependent
- Microbiota transplantation affects behavioural responses

Gut microbiota could influence the development of feather pecking jerine.vandereijk@wur.nl

