Genetics of tail-biting receipt in gilts from the Tai Zumu line

AXIOM

the genetic evidence

∢ <u>∧</u> 8 ∑, 4

GenPhySE

UMR 1388

Laurianne Canario and Loïc Flatres-Grall

Behaviour and trait under study

Tail-biting = damaging behaviour

Receipt of tail-bites = aberrant behaviour

Record: ≥ 1 bite fresh or healing - one single technician at control

Questions

- Magnitude of social effects in the prevalence of tail bites ?
- Influence of the farm environment on the genetic expression of this behaviour ?

Source: AXION

H0 : females are more likely to tail bite than males
Confirmed <3.8% in males
⇒ focus on female population

Data

- 33,266 fattening gilts 2,970 groups of 6 to 20 females
- Tail biting in 30% of groups : $\bar{x} = 2.8$ pigs injured

TB receipt frequency differed between herds (p<0.0001)

	Herd 1 2.8 %	Herd 2 6.6%	Herd 3 10.8%
Group size	8.5 1.0 ^a	12.7 1.9 ^b	14.7 3.9 ^c
Density (pigs / m²)	0.78	0.82	0.85
Feeding system	single trough	single trough	dry feeder

Difference in performance between bitten females and non-bitten females

1. Classic linear model – no genetic effect

Phenotypic value:		Bitten females are leaner		
	E1	E2	E3	
Age at 100 kg (days)	+0,29	+0,19	-0,06	
Backfat thickness (mm)	-0,62 ***	-0,32 ***	-0,15 °	

Difference in performance between bitten females and non-bitten females

1. Classic linear model – no genetic effect

Phenotypic value:	Bitten females are leaner	

	E1	E2	E3
Age at 100 kg (days)	+0,29	+0,19	-0,06
Backfat thickness (mm)	-0,62 ***	-0,32 ***	-0,15 °

2. Classic linear model with direct genetic effect

Genetic value:	and h	and have a higher genetic merit for growth and leanness		
	E1	E2	E3	
Age at 100 kg (days)	+0,52	-0,63 **	-1,33 ***	
Backfat thickness (mm)	-0,16	-0,20 **	-0,29 ***	

Social linear model

$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_D\mathbf{a}_D + \mathbf{Z}_S\mathbf{a}_S + \mathbf{V}\mathbf{g} + \mathbf{W}\mathbf{l} + \mathbf{e}$

Social

0/1 trait

Group

Litter

$$\sigma_{TBV}^{2} = \sigma_{AD}^{2} + 2(\overline{n} - 1)\sigma_{AD,AS} + (\overline{n} - 1)^{2}\sigma_{AS}^{2}$$
$$\sigma_{P}^{2} = \sigma_{AD}^{2} + \sigma_{g}^{2} + \sigma_{l}^{2} + (\overline{n} - 1)\sigma_{AS}^{2} + \sigma_{e}^{2}$$
$$T^{2} = \sigma_{TBV}^{2} / \sigma_{P}^{2}$$

- 1. All population
- 2. Sub-populations ⇔ 2 nucleus herds

Asreml software

Investigation of GxE

- Connectedness with use of common AI sires across herds
- 59 sires with ≥ 20 daughters measured for TB receipt in each herd

Sire by environment interactions

$$\mathsf{TBV}_{ij} = \mathsf{DBV}_{ij} + (n - 1) \mathsf{SBV}_{ij}$$

Spearman rank correlations between DBVs, SBVs and TBVs

Results 1 – social models

	All population	Herd 2	Herd 3
Ν	33266	12375	11856
$\sigma^2_{\scriptscriptstyle AD}$	0.353 0.049	0.322 0.066	0.759 0.157
$\sigma^2_{\scriptscriptstyle As}$	0.032 0.0037	0.012 0.0038	0.019 0.005
σ_P^2	5.932 0.055	5.753 0.087	8.94 0.157
$\sigma^2_{\scriptscriptstyle TBV}$	4.749 0.529	2.300 0.610	3.966 0.944
h_d^2	0.06 0.01	0.06 0.01	0.08 0.02
\hat{T}^2	0.80 0.09	0.40 0.11	0.44 0.11
r_{ADS}	0.11 0.10	0.19 0.19	-0.13 0.18

Contribution of social effects to heritable variation 93% 86% 81%

Variance estimates to multiply with a 10⁻² factor

- Significant social effects with large genetic component on TB receipt
- Large expected gain on response to selection by including social genetic effects in models

Results 2 – Sire ranking accross herds 2 and 3

	Spearman rank correlation	p-value H0: r=0
DBV	0.09	0.49
SBV	0.12	0.37
TBV	0.13	0.32

Ranking according to TBV

Conclusion – Sire x E

- Strong re-ranking across herds
- Selection based on TBV rather than DBV would either increase or attenuate the discrepancies in ranking between Herds 2 and 3

Recommendation

⇒ sires less sensitive to environmental conditions when implementing a selection against gilts with tail bitten

- MODELLING
 Study genetic relations with growth + fatness
- SELECTION limiting the impact of GxE
- New phenotyping technologies ⇒ behaviour

Thank you for your attention

Modelling difficulties

Binary trait

- Threshold sire model
- Linear model ⇒ estimates for direct and social genetic effects

Trait of low prevalence

- Many individuals with 0 value
- 30% of informative groups (0 and 1 observations)

Genetic components not easy to estimate but convergence and estimability correct

Results – social models

Herd	All population	Herd 2	Herd 3
Ν	33266	12375	11856
% TB receipt	7.1	6.6	10.8
$\sigma^2_{\scriptscriptstyle AD}$	0.353 0.049	0.322 0.066	0.759 0.157
$\sigma^2_{\scriptscriptstyle As}$	0.032 0.0037	0.012 0.0038	0.019 0.005
σ_P^2	5.932 0.055	5.753 0.087	8.94 0.157
σ_{TBV}^2	4.749 0.529	2.300 0.610	3.966 0.944
h_d^2	0.06 0.01	0.06 0.01	0.08 0.02
\hat{T}^2	0.80 0.09	0.40 0.11	0.44 0.11
r_{ADS}	0.11 0.10	0.19 0.19	-0.13 0.18
σ_{g}^{2}	0.519 0.049	0.717 0.077	1.323 0.143
σ_l^2	0.235 0.027	0.103 0.037	0.467 0.076

