

Improving mating plans at herd level using genomic information

MARIE BERODIER

P. BERG, T. MEUWISSEN, M. BROCHARD, V. DUCROCQ

Study funded by Mo⁸

The Montbéliarde breed in France

Di**fre**

<u>In 2018</u>

- Dual purpose breed
- 2nd dairy breed in France
 - 17.9 % of French dairy cattle
 - 427 748 lactations recorded

Within year number of female genotypes paid by farmers

Ecole

Doctorale ABIES

Difre

Within year number of female genotypes paid by farmers

In mating plans:

→ Genomic EBVs (GEBVs)

Di**fre**

Within year number of female genotypes paid by farmers

In mating plans:

- → Genomic EBVs (GEBVs)
- → Genomic co-ancestry

Difre

Within year number of female genotypes paid by farmers

In mating plans:

- → Genomic EBVs (GEBVs)
- ➔ Genomic co-ancestry
- → True carrier status for genetic defects

ifre

Within year number of female genotypes paid by farmers

In mating plans:

- → Genomic EBVs (GEBVs)
- ➔ Genomic co-ancestry
- → True carrier status for genetic defects

Can female genomic information improve mating plans in commercial farms?

• Herds characteristics:

- Herds characteristics:
 - At least 20 calvings per year

Ci**fre**

Cifre

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped
 - Information on semen type (sexed, conventional or beef) as chosen by the farmer

Difre

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped
 - Information on semen type (sexed, conventional or beef) as chosen by the farmer

Difre

• Males and females:

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped
 - Information on semen type (sexed, conventional or beef) as chosen by the farmer

Fifre

- Males and females:
 - 54 Montbéliarde bulls (available in summer-autumn 2018)

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped
 - Information on semen type (sexed, conventional or beef) as chosen by the farmer
- Males and females:
 - 54 Montbéliarde bulls (available in summer-autumn 2018)
 - Females Net Merit GEBV and EBV (own or from parental information)

ifre

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped
 - Information on semen type (sexed, conventional or beef) as chosen by the farmer
- Males and females:
 - 54 Montbéliarde bulls (available in summer-autumn 2018)

ABIES

- Females Net Merit GEBV and EBV (own or from parental information)

ifre

- Genomic AND pedigree co-ancestries for all potential mate pairs

- Herds characteristics:
 - At least 20 calvings per year
 - >80% females to be mated are genotyped
 - Information on semen type (sexed, conventional or beef) as chosen by the farmer
- Males and females:
 - 54 Montbéliarde bulls (available in summer-autumn 2018)

ABIES

- Females Net Merit GEBV and EBV (own or from parental information)

ifre

- Genomic AND pedigree co-ancestries for all potential mate pairs

➔ 9 143 females in 160 herds

Cifre

Objective : Maximize expected economic score of the offspring

Difre

Objective : Maximize expected economic score of the offspring

Objective function: Score i =

ifre

Objective : Maximize expected economic score of the offspring

Objective : Maximize expected economic score of the offspring

ABIES

fre

Objective : Maximize expected economic score of the offspring

Objective : Maximize expected economic score of the offspring

A BIES

fre

Objective : Maximize expected economic score of the offspring

ABIES

fre

Global constraints

Global constraints

• 1 mating per female

Ci**fre**

Global constraints

- 1 mating per female
- Female semen type \leftarrow farmer choice

Cifre

Global constraints

- 1 mating per female
- Female semen type ← farmer choice
- Male semen type \leftarrow availability

Difre

Global constraints

- 1 mating per female
- Female semen type ← farmer choice MATCH
 - Male semen type ← availability

Cifre

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - \rightarrow restriction for calving ease

Fifre

Global constraints

• 1 mating per female

MATCH

- Female semen type 🗲 farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

ifre

Global constraints

Mating methods

Random

1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

ifre

Global constraints

• 1 mating per female

MATCH

- Female semen type ← farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

Mating methods

- Random
- Sequential

Fifre

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

ifre

- Random
- Sequential

	_		_			
	M 1	M 2	M 3	M 4	M 5	M 6
F 1	207	241	-69	145	95	77
F 2	147	272	151	23	-53	105
F 3	41	248	56	0	-51	163
F 4	286	176	244	-12	256	300
F 5	-19	19	13	42	195	-16
F 6	181	15	260	176	-48	15

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

ifre

- Random
- Sequential

	_	_	_			
	M 1	M 2	M 3	M 4	M 5	M 6
F 1	207	241	-69	145	95	77
F 2	147	272	151	23	-53	105
F 3	41	248	56	0	-51	163
F 4	286	176	244	-12	256	300
F 5	-19	19	13	42	195	-16
F 6	181	15	260	176	-48	15

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

Fifre

- Random
- Sequential

							_
	M 1	M 2	M 3	M 4	M 5	M 6	
F 1	207	241	-69	145	95	77	
F 2	147	272	151	23	-53	105	
F 3	41	248	56	0	-51	163	
F 4	286	176	244	-12	256	300	
F 5	-19	19	13	42	195	-16	
F 6	181	15	260	176	-48	15	

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

Fifre

- Random
- Sequential

				-				-
		M 1	M 2	M 3	M 4	M 5	M 6	
F 1	1	207	241	-69	145	95	77	
F 2	2	147	272	151	23	-53	105	\leq
F3	3	41	248	56	0	-51	163	
F 4	1	286	176	244	-12	256	300	
F 5	5	-19	19	13	42	195	-16	
Fe	5	181	15	260	176	-48	15	

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

Fifre

- Random
- Sequential

	M 1	M 2	M 3	M 4	M 5	M 6	
F 1	207	241	-69	145	95	77	
F 2	147	272	151	23	-53	105	\leq
F 3	41	248	56	0	-51	163	
F 4	286	176	244	-12	256	300	
F 5	-19	19	13	42	195	-16	
F 6	181	15	260	176	-48	15	

Global constraints

• 1 mating per female

MATCH

- Female semen type \leftarrow farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

Fifre

- Random
- Sequential

				_			_
	M 1	M 2	M 3	M 4	M 5	M 6	
F 1	207	241	-69	145	95	77	
F 2	147	272	151	23	-53	105	\leq
F 3	41	248	56	0	-51	163	\leq
F 4	286	176	244	-12	256	300	<
F 5	-19	19	13	42	195	-16	R
F 6	181	15	260	176	-48	15	

Global constraints

• 1 mating per female

MATCH

- Female semen type ← farmer choice
- Male semen type \leftarrow availability
- Heifers with conventional semen
 - ightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

Fifre

- Random
- Sequential

		M 1	M 2	M 3	M 4	M 5	M 6	
S	F 1	207	241	-69	145	95	77	
eife	F 2	147	272	151	23	-53	105	K
Ξ	F 3	41	248	56	0	-51	163	K
	F 4	286	176	244	-12	256	300	K
	F 5	-19	19	13	42	195	-16	K
	F 6	181	15	260	176	-48	15	

Global constraints

• 1 mating per female

MATCH

- Male semen type \leftarrow availability
- Heifers with conventional semen
 - \rightarrow restriction for calving ease
- Max 10% of the females of a herd per bull

A BIES

ifre

Mating methods

- Random
- Sequential

		M 1	M 2	M 3	M 4	M 5	M 6	
S	F 1	207	241	-69	145	95	77	
eife	F 2	147	272	151	23	-53	105	K
т	F 3	41	248	56	0	-51	163	\leq
S	F 4	286	176	244	-12	256	300	K
NON CON	F 5	-19	19	13	42	195	-16	K
	F 6	181	15	260	176	-48	15	

• Linear programing

Average economic score (€)
Average Net Merit (€)
Average genomic co-ancestry (%)
Probability of calf loss due to a
genetic defect (%)
Max. genomic co-ancestry (%)

Ci**fre**

Cifre

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score
Average economic score (€)	175.5			
Average Net Merit (€)	394.8			
Average genomic co-ancestry (%)	6.3			
Probability of calf loss due to a genetic defect (%)	1.8	-		
Max. genomic co-ancestry (%)	-			

+

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score
Average economic score (€)	175.5	150	218.7	223.9
Average Net Merit (€)	394.8	390.9	436.3	437.1
Average genomic co-ancestry (%)	6.3	7	5.2	5
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15
Max. genomic co-ancestry (%)	-	31.9	16.5	14.6

Linear programing > Sequential > Actual > Random

Cifre

+

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score
Average economic score (€)	175.5	150	218.7	223.9	Hypothosis
Average Net Merit (€)	394.8	390.9	436.3	437.1	Only pedigree
Average genomic co-ancestry (%)	6.3	7	5.2	5	from females
Probability of calf loss due to a	1.8	1.15	0.2	0.15	
Max. genomic co-ancestry (%)	_	31.9	16.5	14.6	

Ci**fre**

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score
Average economic score (€)	175.5	150	218.7	223.9	201.4
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37
Max. genomic co-ancestry (%)	_	31.9	16.5	14.6	13.6

Genomic > Pedigree

Ci**fre**

+

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit
Average economic score (€)	175.5	150	218.7	223.9	201.4	Hypothesis [,]
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6	Optimization
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	only (≠ score)
Probability of calf loss due to a	1.8	1.15	0.2	0.15	0.37	
Max. genomic co-ancestry (%)	_	31.9	16.5	14.6	13.6	

Ci**fre**

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit
Average economic score (€)	175.5	150	218.7	223.9	201.4	189.6
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6	445.5
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	7.1
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37	0.58
Max. genomic co-ancestry (%)	_	31.9	16.5	14.6	13.6	31.2

Ci**fre**

Economic score > Net Merit only

+

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit	Gen. Lin.P. Bulls all sem. type
Average economic score (€)	175.5	150	218.7	223.9	201.4	189.6	Hypothesis [.]
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6	445.5	Bulls available
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	7.1	sexed and
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37	0.58	semen
Max. genomic co-ancestry (%)	-	31.9	16.5	14.6	13.6	31.2	

Ci**fre**

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit	Gen. Lin.P. Bulls all sem. type
Average economic score (€)	175.5	150	218.7	223.9	201.4	189.6	231.3
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6		441.3
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	7.1	4.7
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37	0.58	0.11
Max. genomic co-ancestry (%)	_	31.9	16.5	14.6	13.6	31.2	14.6

→ Semen type availability can improve mating choice

Cifre

+

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit	Gen. Lin.P. Bulls all sem. type	Gen. Lin.P. co-anc 8.5
Average economic score (€)	175.5	150	218.7	223.9	201.4	189.6		
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6	445.5	441.3	Hypothesis: Coancestry
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	7.1		limited to 8.5%
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37	0.58		
Max. genomic co-ancestry (%)	-	31.9	16.5	14.6	13.6	31.2	14.6	

Ci**fre**

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit	Gen. Lin.P. Bulls all sem. type	Gen. Lin.P. co-anc 8.5
Average economic score (€)	175.5	150	218.7	223.9	201.4	189.6		223.7
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6	445.5	441.3	436.5
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	7.1		4.9
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37	0.58		0.16
Max. genomic co-ancestry (%)	_	31.9	16.5	14.6	13.6	31.2	14.6	8.5

→ Constraining co-ancestry has small negative impact on other parameters

Cifre

Ecole

A BIES

+

	Farmers current plans	RANDOM	Genomic Sequential Score	Genomic Linear Pro. Score	Pedigree Linear Pro. Score	Genomic Linear Pro. Net Merit	Gen. Lin.P. Bulls all sem. type	Gen. Lin.P. co-anc 8.5
Average economic score (€)	175.5	150	218.7	223.9	201.4	189.6	231.3	223.7
Average Net Merit (€)	394.8	390.9	436.3	437.1	436.6	445.5	441.3	436.5
Average genomic co-ancestry (%)	6.3	7	5.2	5	6.2	7.1	4.7	4.9
Probability of calf loss due to a genetic defect (%)	1.8	1.15	0.2	0.15	0.37	0.58	0.11	0.16
Max. genomic co-ancestry (%)	-	31.9	16.5	14.6	13.6	31.2	14.6	8.5

→ Genomic information can improve current plans

Cifre

+

Genomic information can improve current mating plans

Genomic information can improve current mating plans

 \succ Mating methods are fast ightarrow applicable on farm

ifre

Genomic information can improve current mating plans

- \succ Mating methods are fast \rightarrow applicable on farm
- Genomic information allows for better mating plans than pedigree information only
 - > -19% co-ancestry & -2.5 fold of fetus affected by a genetic defect

Genomic information can improve current mating plans

- \succ Mating methods are fast ightarrow applicable on farm
- Genomic information allows for better mating plans than pedigree information only
 - > -19% co-ancestry & -2.5 fold of fetus affected by a genetic defect
- Not accounting for co-ancestry and probability to conceive a fetus affected by a genetic defect leads to under-optimized mating solutions

ABIES

ABIES

Genomic information can improve current mating plans

- \succ Mating methods are fast ightarrow applicable on farm
- Genomic information allows for better mating plans than pedigree information only
 - > -19% co-ancestry & -2.5 fold of fetus affected by a genetic defect
- Not accounting for co-ancestry and probability to conceive a fetus affected by a genetic defect leads to under-optimized mating solutions
- > Type of semen must be accounted for when planning the matings

Objective : Maximize expected economic score of the offspring

Objective function: Score _{ij} = $(0.5 (NM_i + NM_j) + \lambda F_{ij}) \times prob(\textcircled{O}) + \sum_{r=1}^{n_r} p(aa)_r \times v_r$

- Score_{ii}: expected economic added value of the offspring from female i and bull j
- NM: GEBV for Net Merit trait
- λ: economic value associated to 1% of inbreeding (€)
- F_{ij}: expected inbreeding of the offspring from female i and bull j

ABIES

- prob(
): probability to conceive a female fetus. (0.5 with conventional semen and 0.9 with sexed semen)
- p(aa)_r: probability to conceive a fetus homozygous for the deleterious recessive allele r
- v_r: economic value associated to the conception of a fetus affected by the genetic defect r

$r \in \{MH1; MH2; MTCP\}$

AgroParisTech