



# Selection trace from runs of homozygosity in French dairy sheep



S. T. Rodríguez-Ramilo, A. Reverter, A. Legarra



# Introduction

Runs of homozygosity (ROH) are contiguous homozygous segments of the genome where the haplotypes inherited from each parent are identical

#### **ROH-based inbreeding**:

(1) Distinguish recent from ancient inbreeding

(2) Improve the understanding of inbreeding depression





# Introduction

The occurrence of ROH is not randomly distributed across the genome, and islands of ROH may be the result of selective pressure

#### **Objective**:

To use  $F_{ST}$  and ROH to explore selective pressure in French

dairy sheep breeds and subpopulations









# Material

| Breed / Subpopulation | Genotyped individuals |  |  |
|-----------------------|-----------------------|--|--|
| BB                    | 321                   |  |  |
| MTN                   | 329                   |  |  |
| MTR                   | 1,906                 |  |  |
| LACCon                | 3,030                 |  |  |
| LACOvi                | 3,114                 |  |  |

**50K chip:** 38,287 autosomal SNP distributed in 26 autosomes and 8,700 genotyped rams

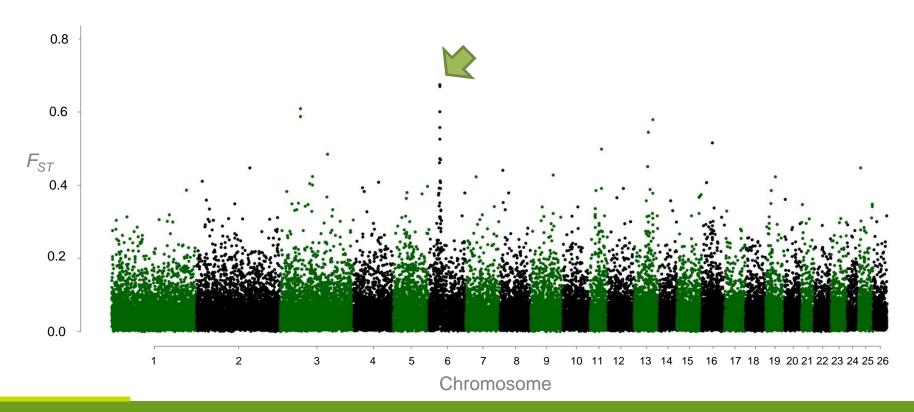






#### Genetic differentiation coefficient

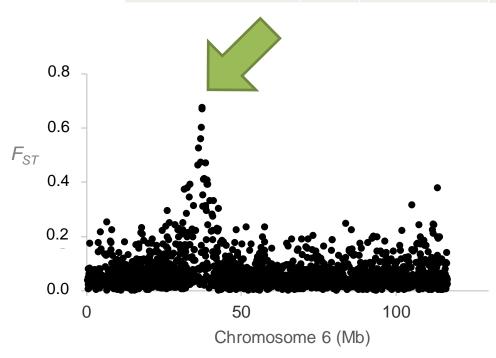
Plink software (Purcell et al. 2007) to calculate  $F_{ST}$  (Weir &


Cockerham 1984)

Runs of homozygosity

Software detectRUNS (Biscarini et al. 2018)












| SNP name        | <b>F</b> <sub>ST</sub> | P-value               | POSITION (Mb) |
|-----------------|------------------------|-----------------------|---------------|
| OAR6_41583796.1 | 0.68                   | $4.03 \times 10^{-9}$ | 37.42         |
| OAR6_41709987.1 | 0.67                   | $4.01 \times 10^{-9}$ | 37.54         |





## *F<sub>ST</sub>* for SNP OAR6\_41583796.1

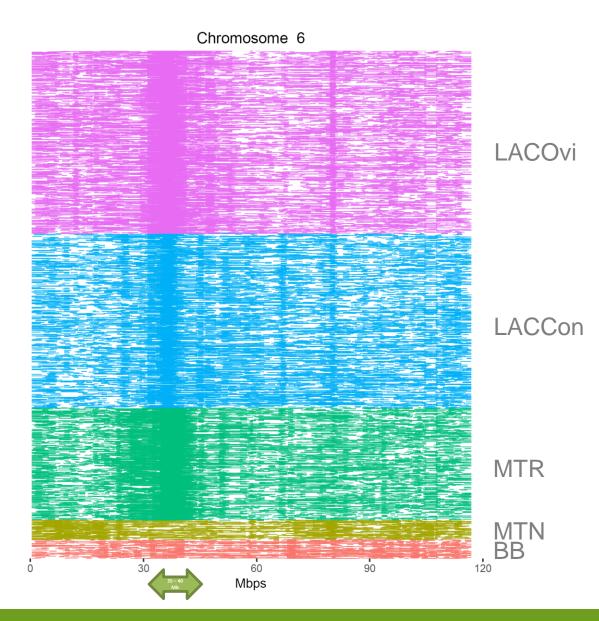
|        | BB | MTN  | MTR  | LACCon | LACovi |
|--------|----|------|------|--------|--------|
| BB     |    | 0.08 | 0.13 | 0.65   | 0.78   |
| MTN    |    |      | 0.40 | 0.48   | 0.64   |
| MTR    |    |      |      | 0.78   | 0.86   |
| LACCon |    |      |      |        | 0.02   |
| LACOvi |    |      |      |        |        |

Similar results were observed for SNP OAR6\_41709987.1








Allele frequency

|        | OAR6_41583796.1 | OAR6_41709987.1 |  |
|--------|-----------------|-----------------|--|
| BB     | 0.80            | 0.80            |  |
| MTN    | 0.62            | 0.62            |  |
| MTR    | 0.95            | 0.94            |  |
| LACCon | 0.13            | 0.13            |  |
| LACOvi | 0.07            | 0.07            |  |

Both SNPs were in nearly complete linkage disequilibrium ( $r^2 = 0.98$ )



ROH









- Signal confirmed in the literature (e. g. Naval-Sánchez et al. 2018; Rochus et al. 2018)
- Associated genes to this position: *NCAPG* and *LCORL*, implicated in controlling weight and stature
- Probably, Lacaune has been selected for bigger animals and MTR for smaller ones





# Summarising...

#### Single marker $F_{ST}$ and ROH analyses **agree that**

#### selection signatures exists around markers

#### OAR6\_41583796.1 and OAR6\_41709987.1, and the

#### associated genes to this position are NCAPG and LCORL





Acknowledgements







#### INRA project: GDivSelGen

# **Thanks for your attention!**

E-mail: silvia.rodriguez-ramilo@inra.fr

