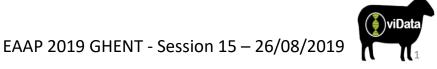


Across-breed genomic evaluation for meat sheep in Ireland



T. Pabiou¹², E. Wall², K. McDermott², C. Long², A.C. O'Brien³.

¹Irish Cattle Breeding Federation & ²SheepIreland, Highfield House, Shinagh, Bandon P72 X050, Co. Cork, Ireland ³Teagasc Moorepark, Fermoy, Co Cork, Ireland

Agriculture, Food and the Marine

Background: Irish breeding program

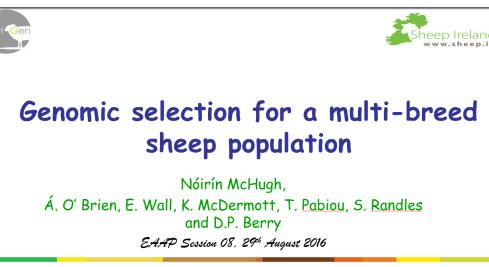
C vi Gen

- Trait groups
 - 🕩 Lambing
 - 🥩 Lamb growth
 - 🥩 Lamb carcass
 - 🕩 Lamb health
 - 🖤 Ewe growth
 - 📌 Ewe health
 - 📌 Litter size

- Across breed breeding indexes
 - 🔝 TERMINAL INDEX

REPLACEMENT INDEX

Background: Genomic research



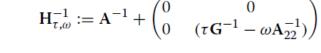
• EAAP 2016 Belfast

The Irish Agriculture and Food Development Authority

Sheep Ireland: Profit through science

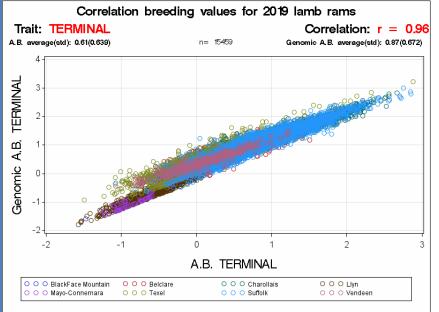
Objective

- Developing single step across-breed genomic evaluation for meat sheep
- Assessing the accuracy of the genomic evaluation over the current across-breed genetic evaluation



Single step process

- 32,819 animals genotyped across 5 chips (8-11-39-41-49K)
 - Mainly from 2010 to present
- Imputed to 49K
 - FImpute (Sargolzaei M., 2014)
- Genomic evaluation across 4 modules
 - Litter size, Lambing, Growth & Carcass, Health
 - Single step (SS-GBlup) τ =0.70
 - Post-process
 - Base adjustment
 - Index construction



Results on breeding values

Comparison GS AB with GE AB

Change in mean index for 2019 lamb rams*					
	Ν	TERMINAL	REPLACEMENT		
Belclare	2160	0.27	0.52		
Charollais	3819	0.26	0.28		
Llyn	1057	-0.05	0.32		
Suffolk	2664	0.38	0.78		
Texel	5180	0.25	0.63		
Vendeen	479	0.30	0.52		

* Genomic evaluation compared to genetic evaluation

Result on accuracy

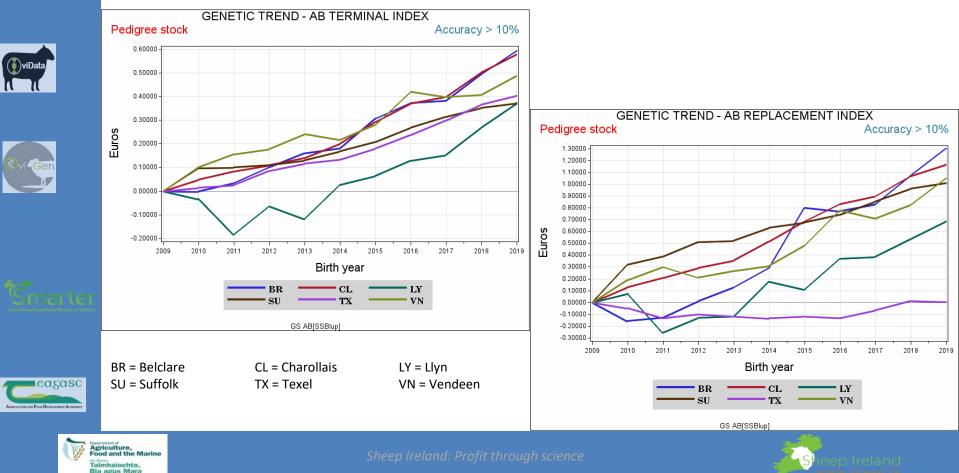
eagasc

Correlation accuracy for 2019 lamb rams Trait: TERMINAL Correlation: r = 0.79				
A.B	3. average(std): 0.4(0.075) n= 15459	Genomic A.B. average(std): 0.43(0.105)		
Genomic A.B. ACC. TERMINAL				
	0.0 0.1 0.2 0.3 0.4 0	.5 0.6 0.7 0.8 0.9 1.0		
A.B. ACC. TERMINAL				
		O Charollais O O Llyn O Suffolk O O Vendeen		

Comparison GS AB with GE AB

Gain in accuracy for genotyped 2019 lamb rams*					
	Ν	TERMINAL	REPLACEMENT		
Belcalre	679	+16%	+18%		
Charollais	444	+15%	+17%		
Llyn	44	+13%	+14%		
Suffolk	617	+18%	+18%		
Texel	901	+16%	+16%		
Vendeen	70	+17%	+19%		

* Genomic evaluation compared to genetic evaluation



Genetic trends

Validation process

easasc

Running genetic & genomic eval.

Rest \Rightarrow calibration phenotypes

Validation animals get a parent average genetic merit (PA)

Last 3 years of phenotypes are masked \Rightarrow validation phenotypes

- Computing yield deviations from phenotypes
 - $YD = Y X\beta$
- **Comparing YD and PA**

Defining the dataset

- Best ($\star \star \star \star \star$) & Worst (\star) groups of animals
- **Regression of YD on PA**

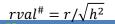
viData

Star validation

		Difference 5★ - 1★ (s.e)	
	# validation animals	Current genetic eval.	Single step genomic eval.
Litter size	4,565	0.28 (0.025)	0.35 (0.028) 😊
Weaning weight (kg)	15,016	1.4 (0.159)	2.0 (0.147) 😊
Weight @ scan (kg)	8,437	2.4 (0.178)	2.9 (0.195) 😊
Age at slaughter (day)	3,714	-13.9 (2.100)	-12.0 (2.646) 😐
Ewe mature weight (kg)	3,549	-6.2 (0.322)	-6.8 (0.351) 🕲
Lamb survival @ birth (%)	21,962	1.8 (0.047)	1.5 (0.053) 😐
Lambing ease multiple (%)	18,406	3.6 (0.086)	4.7 (0.089) 😊

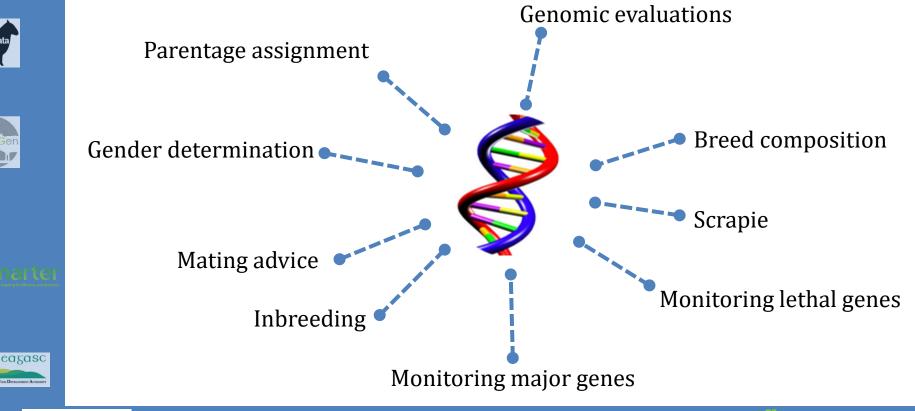
Department of Agriculture, Food and the Marine Talmhaiochta, Bia agus Mara

Model validation



		Reg. slope* (s.e.) [rval%] [#]	
	#validation animals	Current genetic eval.	Single step genomic eval.
Litter size	4,565	1.47 (0.186) [85%]	1.74 (0.215) [85%] 😕
Weaning weight (kg)	15,016	0.67 (0.081) [28%]	0.72 (0.076) [32%] 🕲
Weight @ scan (kg)	8,437	0.56 (0.078) [27%]	0.63 (0.076) [32%] 🙂
Age at slaughter (day)	3,714	0.71 (0.191) [24%]	0.70 (0.175) [26%] 😑
Ewe mature weight (kg)	3,549	1.59 (0.137) [81%]	1.83 (0.160) [80%] 😣
Lamb survival @ birth (%)	21,962	0.05 (0.029) [22%]	0.05 (0.031) [22%] 🙂
Lambing ease multiple (%)	18,406	0.07 (0.022) [12%]	0.10 (0.025) [12%] 🕲

*Reg. slope** = *b* = *regression slope* YD = *bPA* + *e*



()viData

More to genomics

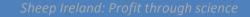
Sheep Ireland: Profit through science

Conclusion

- Genomic evaluation pipeline in place
 Strong correlations between current and genomic breeding values
- Large gain in accuracy for genotyped animalsValidation Ok on growth traits
- But (for the sheep industry) there is much more to genomic than genomic evaluations!

Acknowledgements

- 🗢 SheepIreland team
- 🐑 Teagasc Moorepark sheep team


Irish department of agriculture, food, and the marine stimulus funding grant

