

Breeding for changes in enteric methane emissions: Lessons from Sheep

Suzanne Rowe, Arjan Jonker, Cesar Pinares, Melanie Hess, Larissa Zetouni, Tricia Johnson, Rudiger Brauning, Peter Janssen & John McEwan

Methane Selection Lines

Respiration chamber - cut pasture

CH₄ yield from 50 low and 46 high CH₄ sheep repeated on cut pasture following the standard alfalfa pellet trial

Methane Selection Lines

Maternal Worth Index

Low v High Methane Sheep

- ~11% less methane per kg feed
- 20% smaller rumens
- Different energy profile
- Different microbial fermentation

	Methane	Methane Yield
	r _g	r _g
RFI	-0.28 ± 0.16	-0.41 ± 0.15
MEIntake	0.33 ± 0.17	-0.24 ± 0.09
GROWTH_RATE	0.34 ± 0.10	0.10 ± 0.16
Av_Intake_Feed	0.41 ± 0.13	0.21 ± 0.08
Fat_Start	-0.001 ± 0.13	0.27 ± 0.10
Change_C	-0.27 ± 0.23	-0.26 ± 0.13
Fat_End	-0.04 ± 0.15	0.06 ± 0.08
Eating_Events	-0.28 ± 0.08	-0.38 ± 0.15
Feeding_Rate	0.55 ± 0.16	0.27 ± 0.11

Meat – fatty acid profiles

	HighGHG	LowGHG	P value		HighGHG	LowGHG	P value
GR	16.5 ± 1.06	14.8 ± 1.28	0.0853	C18:1 t11	0.56 ± 0.03	0.62 ± 0.03	0.0046
IMF%	4.67 ± 0.39	4.84 ± 0.46	0.0673	C18:1c9	1.58 ± 0.01	1.57 ± 0.01	0.0136
SFA	3.86 ± 0.01	3.84 ± 0.01	0.0196	C18:1c11	0.27 ± 0.00	0.28 ± 0.00	0
MUFA	3.77 ± 0.01	3.76 ± 0.01	0.4728	Unknown 15	0.06 ± 0.00	0.06 ± 0.00	0.0002
PUFA	2.07 ± 0.02	2.16 ± 0.03	0	Unknown 16	0.02 ± 0.00	0.02 ± 0.00	0.1392
BC	0.84 ± 0.02	0.87 ± 0.02	0.0232	Unknown 17	0.13 ± 0.00	0.13 ± 0.00	0.0009
C10:0	0.05 ± 0.00	0.04 ± 0.00	0.0676	Unknown 18	0.05 + 0.00	0.06 + 0.00	0.0138
Artifact:1	0.05 ± 0.00	0.05 ± 0.00	0.8649	Unknown 19	0.04 ± 0.00	0.04 ± 0.00	0 7978
C12:0	0.03 ± 0.00	0.03 ± 0.00	0.6162	C18-2tt n6	0.04 ± 0.00	0.04 ± 0.00	0.0001
iso C14	0.01 ± 0.00	0.01 ± 0.00	0.2387	Linknown 20	0.12 ± 0.00	0.13 ± 0.00	0.0001
C14:0	0.43 ± 0.01	0.43 ± 0.01	0.9527	Unknown 20	0.06 ± 0.00	0.07 ± 0.00	0
iso C15	0.06 ± 0.00	0.06 ± 0.00	0.1388	Unknown 21	0.01 ± 0.00	0.01 ± 0.00	0.2926
anteiso C15	0.06 ± 0.00	0.07 ± 0.00	0.0185	Unknown 22	0.10 ± 0.00	0.12 ± 0.01	0
C14:1	0.01 ± 0.00	0.01 ± 0.00	0.1821	C18:2 n6	0.48 ± 0.01	0.52 ± 0.01	0.0001
C15:0	0.12 ± 0.00	0.13 ± 0.01	0.0499	Unknown 23	0.03 ± 0.00	0.03 ± 0.00	0.1553
Artifact:2	0.24 ± 0.01	0.26 ± 0.01	0.3848	Unknown 24	0.01 ± 0.00	0.01 ± 0.00	0.3738
iso C16	0.05 ± 0.00	0.05 ± 0.00	0.0235	Unknown 25	0.02 ± 0.00	0.02 ± 0.00	0.8705
Unknown 3	0.02 ± 0.00	0.02 ± 0.00	0.0578	Unknown 26	0.01 ± 0.00	0.01 ± 0.00	0.7695
Unknown 4	0.03 ± 0.00	0.03 ± 0.00	0.0666	C20:0	0.03 ± 0.00	0.02 ± 0.00	0.1941
C16:0	1.38 ± 0.01	1.37 ± 0.01	0.5731	C18:3 n3	0.43 ± 0.01	0.46 ± 0.01	0
Unknown 5	0.03 ± 0.00	0.04 ± 0.00	0.0538	9 11 CLA	0.29 ± 0.02	0.33 ± 0.02	0.001
Unknown 6	0.01 ± 0.00	0.01 ± 0.00	0.6384	Unknown 27	0.01 ± 0.00	0.02 ± 0.00	0.0723
Unknown 7	0.01 ± 0.00	0.02 ± 0.00	0.1102	Unknown 28	0.01 ± 0.00	0.01 ± 0.00	0.5364
C16:1t	0.04 ± 0.00	0.05 ± 0.01	0.0014	Unknown 29	0.01 ± 0.00	0.01 ± 0.00	0.7318
iso C17	0.15 ± 0.00	0.16 ± 0.00	0.053	Unknown 30	0.07 ± 0.00	0.09 ± 0.00	0
Unknown 8	0.13 ± 0.00	0.13 ± 0.00	0.1536	Unknown 31	0.07 ± 0.00	0.06 ± 0.00	0.0001
C16:1	0.28 ± 0.01	0.29 ± 0.01	0.0099	Unknown 32	0.03 ± 0.00	0.04 ± 0.00	0.173
anteiso C17	0.17 ± 0.00	0.18 ± 0.01	0.0298	C20:4 n6	0.19 ± 0.01	0.20 ± 0.01	0.5907
Unknown 9	0.02 ± 0.00	0.01 ± 0.00	0.3494	C22:1	0.01 ± 0.00	0.01 ± 0.00	0.3251
C17:0	0.28 ± 0.00	0.28 ± 0.00	0.2142	Unknown 33	0.02 ± 0.00	0.02 ± 0.01	0.3411
Artifact:3	0.27 ± 0.01	0.26 ± 0.01	0.5595	Unknown 34	0.01 ± 0.00	0.01 ± 0.00	0.7671
Unknown 10	0.06 ± 0.00	0.06 ± 0.00	0.2063	Unknown 35	0.01 ± 0.00	0.01 ± 0.00	0.6732
Unknown 11	0.04 ± 0.00	0.04 ± 0.00	0.2563	Unknown 36	0.02 + 0.00	0.02 + 0.00	0 7064
C17:1	0.14 ± 0.00	0.15 ± 0.00	0.0384	C20.5 n3	0.02 ± 0.00	0.02 ± 0.00	0.55
Unknown 12	0.01 ± 0.00	0.02 ± 0.00	0.0622	C20.5 115	0.20 ± 0.01	0.21 ± 0.01	0.55
Unknown 13	0.04 ± 0.00	0.04 ± 0.00	0.9629	Unknown 27	0.01 ± 0.00	0.02 ± 0.00	0.000
C18:0	1.30 ± 0.01	1.28 ± 0.01	0.0023	CODE CODE CODE CODE CODE CODE CODE CODE	0.01 ± 0.00	0.01 ± 0.00	0.4659
Unknown 14 C18:1t	0.05 ± 0.00	0.06 ± 0.00	0.0159	C22:5 C22:6 n3	0.17 ± 0.01 0.08 ± 0.00	0.17 ± 0.01 0.07 ± 0.01	0.3091
C18:1 t9	0.08 ± 0.00	0.08 ± 0.00	0.0056				

Microbial fermentation in the rumen

agresearch

Genetic Parameters: RMC

0,5

0

PGgR

SCFA Acetic Butyric proprioriic

Genetic Correlatior

NEW ZEALAND

- N = 260 x 2 measures
- Most variation is in 2 dimensions (CA1, CA2)
- This variation is repeatable and heritable

-0,5 -0,5 CHADMI Rowe et al 2015 -1

Microbial Sequencing

- Global Production Livestock Emissions research (GPLER)
- ~3,000NZ plus 500 merino (DPI New South Wales)
- Known methane status, known feed intake
- Variation in individual, breed, diet
- Detect low methane signatures across systems/environments

CULTURAL GREENHOUSE GASES

GBS Microbial Profiling

Sample

GBS

Reference-Based

Network Analysis

agresearch

GLOBAL RESEARCH ALLIANCE on agricultural greenhouse gases

Reference-Based Approach

Query sequences against a reference database (e.g. Hungate1000) Assign sequences to taxonomies End up with a table of counts for each taxonomic group

Mothod	DE	Accuracy by taxonomic level (%)								
Methou	NL.	Kingdom	Phylum	Class	Order	Family	Genus	Species		
	АреКІ	100.0	99.8	99.7	99.5	98.2	96.1	83.6		
BLASTN	Pstl	100.0	99.9	99.8	99.6	98.5	97.8	86.3		
BLASTX	АреКІ	100.0	99.5	98.9	98.9	96.9	96.0	83.8		
	Pstl	100.0	99.0	98.7	98.7	96.8	96.8	86.3		

Reference-Based Results

RE	Sample	Genus Hit Rate (%)	
AnoKi	High	4.7	n-1 4 a-8
Арекі	Low	5.9	_ p=1.4e °
Detl	High	6.3	
PSU	Low	7.3	- p=4.0e⁻⁵

Samples from low-methane animals had higher hit rates

Genus		ApeKI			Pstl	
	High (SD)	Low (SD)	P-value	High (SD)	Low (SD)	P-value
Fibrobacter	2.8 (1.4)	3.8 (2.2)	3.21e ⁻⁵	1.1 (0.5)	1.5 (0.8)	2.00e ⁻⁵
Kandleria	0.1 (0.1)	0.2 (0.4)	0.0014	0.4 (0.5)	0.6 (0.8)	0.0261
Olsenella	2.4 (1.2)	3.5 (2.9)	0.0009	0.6 (0.9)	0.7 (1.2)	0.1908
Sharpea	0.1 (0.4)	0.2 (0.5)	0.2017	0.1 (0.2)	0.1 (0.3)	0.4814

Microbiomes to predict methane

GLOBAL RESEARCH ALLIANCE on agricultural greenhouse gases

Reference-Free Approach

- Not all sequences will be unique
- Find the 65bp reads (tags) that are common
- Assign to bins/groups

acor	1	ULL		9021	903
NNNN	INNNNN	INNNN	NNNN	NNNNNNNN	INNNN
CAAT	GGCAGT	AGAT	AAACT	GGCGGAAGG	TATC
e aa	ggcag	agat	aaac	ggoggaagg	Tal
c A	GGCAG	AGA	AAAC	GGCGGAAGG	i at T
CC A	GGCAG	AGAI	AAAC	GGCGGAAGG	i A T
32	GGCAG	AGAT	AAAC	GGGGGAAGG	T A T
20	GGCAG	AGAT	AAAC	GGGGGAAGG	AT
oca	GGCAG	AGA	AAAC	GGGGGAAGG	R AL
CCAA	geag	agat		ggeggaagg	tat
CCAA	G cag	agat		ggeggaagg	tat
ccaa	gg ag	agat	aaac	ggeggaagg	tat-
CCAA	GG	AGAT	AAAC	GGCGGAAGG	TAT
CAA	GGCA	gat	aaac	ggeggaagg	tat
CCAA	GGCAG		aaac	ggeggaagg	tatt

RMC profiling using GBS with and without a reference dataset

Information	Parameter	Sheep1	Sheep2	Cattle
	Number of Samples	236	654	186
Sequencing	Samples per Lane	118	164	188
	Number of Reads/Sample	2.7M ± 680k	1.5M ± 586k	759k ± 147k
Reference-Based	Percent Assigned	6.8 ± 1.8	6.3 ± 1.2	9.3 ± 1.6
Deference Free	Number of Tags*	503k	375k	423k
Reference-riee	Percent Assigned	38.1 ± 16.2	39.1 ± 3.2	64.3 ± 6.8

* Tags are 65bp reads present in at least 25% of samples

Sheep Results

Approach	h ²	Repeatability	Correlation CH ₄ Yield
16S	0.26 (0.23)	0.45 (0.08)	0.65 (0.47)
Reference	0.62 (0.06)	0.62 (0.06)	0.59 (0.32)
No Reference	0.23 (0.26)	0.62 (0.06)	0.83 (0.31)

Sensitivity Analysis

Dataset II

978 lambs across 3 flocks Feed Intake and Methane

		Methane	
Model	Var exp	Accuracy	Var exp Tr
Pedigree	0.29 ± 0.09	0.08	0.45 ± 0.15
Microbes	0.74 ± 0.14	0.29	0.69 ± 0.18
Both	0.89 ± 0.14	0.27	0.96 ± 0.19
		Total Gas	
Model	Var exp	Accuracy	Var exp Tr
Pedigree	0.20 ± 0.08	0.11	0.27 ± 0.13
Microbes	0.20 ± 0.14	0.03	0.25 ± 0.20
Both	0.39 ± 0.15	0.11	0.49 ± 0.21

GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

	Μ	ethane Yield	
Model	Var exp	Accuracy	Var exp Tr
Pedigree	0.35 ± 0.09	0.11	0.42 ± 0.13
Microbes	0.66 ± 0.14	0.24	0.78 ± 0.18
Both	0.84 ± 0.14	0.24	0.96 ± 0.19

New Zealand Dataset

Samples

(beef-lamb) GEN

Individuals

		Lar	mb	Ad	lult				Lamb		Ac	lult	
Flock	YOB	Grass Diet	Pellet Diet	Grass Diet	Pellet Diet	Total	Flock	YOB	Grass Diet	Pellet Diet	Grass Diet	Pellet Diet	Total
	2014	88	87	49	80	88		2014	88	88	49	80	305
Α	2015	133	146	76		146	Α	2015	133	146	76		355
	2016	160	159	91		161		2016	160	159	91		410
	2014	96	96	96		96		2014	287	192	175		653
В	2015	96	96	53		96	В	2015	96	96	53		245
	2016	57	94	61		104		2016	57	94	61		212
	2014	55	109	62	98	110		2014	55	109	62	98	324
С	2015	149	149	84		150	С	2015	149	151	84		384
	2016	144	144	82		148		2016	145	144	82		371
Tot	tal	978	1080	654	178	1099	То	tal	1170	1179	733	178	3260

agresearch

NEW ZEALAND

Table 3: Numbers of ewes and tests, dates, birth years, and means for liveweights, feed offered (FDO) and eaten the day before testing (FIDP) for each batch

	0800 hr on the test day								
	Numb	ers of e	wes and	l tests	Dates	Birth I	Live-weight (kg) FDO (kg)	FIDP (kg)
Batch	Ewes	PAC0 ^A	PAC1 ^A	\mathbf{RC}^{A}	1st test - last test	years	mean ±s.d.	mean ±s.d.	mean ±s.d.
1	79	96	96	160	16 Apr 13 May 15	2012	50.1 ±4.7	1.37 ±0.10	1.36 ±0.10
2	82	96	96	176	21 May - 19 June 15	2012	45.4 ±4.0	1.27 ±0.09	1.26 ±0.10
3	29	36	36	64	27 Aug 17 Sep. 15	2007-12	48.9 ±5.8	1.43 ±0.12	1.42 ±0.13
4	80	84	96	168	8 Oct. – 5 Nov. 15	2013	45.8 ±5.5	1.36 ±0.12	1.35 ±0.13
5	80	84	96	168	19 Nov - 17 Dec. 15	2013	52.6 ±7.8	1.51 ±0.27	1.48 ±0.20
6	80	84	96	168	14 Jan 1 Feb. 16	2013	56.3 ±7.3	1.59 ±0.15	1.52 ±0.19
7	80	84	96	160	25 Feb 23 Mar.16	2007-8	52.0 ±5.5	1.54 ±0.12	1.43 ±0.18

00001 the test of

PAC0 = Portable Accumulation Chamber (PAC) test immediately off feed; PAC1 = PAC test commencing 1 hour

after removing feed; RC = respiration chamber. FDO = feed offered, FIDP = feed eaten (kg) over the 24 hours to

^A Includes repeat tests on some animals.

Roll Out.....

	Production only index		Prod plus Methane index	
	Prod	Prod + CH4	Prod	Prod + CH4
Average				
Economic (\$)	36.65	35.96	35.63	37.63
Change (\$)			-1.03	+0.98
Physical (%)		+1.69		-3.69

Next steps for sheep

GLOBAL RESEARCH ALLIANCE on agricultural greenhouse gases

Preview PDF

- Modelling and visualisation of all microbial data
 - Develop agnostic predictors & test accuracy
 - Functional grouping information bioinformatics
 - Compare breed, diet
- Milk fatty acid differences between the selection lines
- Genomics of physiological changes
- Additivity of strategies

Abstract

Abstract

doi: https://doi.org/10.1101/694133

Full Text

This article is a preprint and has not been peer-reviewed [what does this mean?].

Info/History

Microbial community profiles have been associated with a variety of traits, including methane emissions in livestock, however, these profiles can be difficult and expensive

Metrics

Acknowledgements

Financial support was provided by:

- Microbes to predict methane project funded by Global Partnerships in Livestock Emissions Research through Ministry for Primary Industries
 SOW-AGR-GPLER-SP5
- Pastoral Greenhouse Gas Research Consortium
- New Zealand Agricultural Greenhouse Gas Research Centre
- AgResearch Curiosity fund
- MBIE funded Genomics for Production and Security Programme
- Beef and Lamb New Zealand Genetics

AgResearch (Animal) Genomics Team

PGgRc[®] Pstoral greeningue gas

NEW ZEALAND AGRICULTURAL GREE

Final Stage - Analysis

Over 3500 NZ sheep rumen samples 508 Australian sheep rumen samples

- Across Diet: Pasture or Lucerne Pellet
- Across Age: Lamb or Adult
- Multiple Breeds
- Phenotypes:
 - Methane emissions
 - Feed intake
 - Production traits

Sample Collection Strategies Low-cost, high-throughput

Juliana Budel and John McEwan

Expand to Cattle.....GRA Flagship

- LEARN Post-Doc Quantitative Genetics
- Starting with sequencing NZ dairy cattle
- Expand to additional systems and partners
- Make new sequencing methods available to all partners
- Protocols and agreement to share samples and phenotypes
- 1,000 samples fully funded
- Developing microbial and genomic predictors for differences in methane

