

UNIVERSITÀ DEGLI STUDI DI MILANO

Feed design applying circular economy principles: the case of former food products

L. Pinotti, M. Tretola, A. Luciano and M. Ottoboni

¹ Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", University of Milano,

Italy

Do more with less!

- Today agriculture is faced with a wide range of complex challenges.
- The task is to meet the growing demand for food, feed, fibre, fuel, and industrial products using fewer resources.
- We need to find alternative protein/energy sources.....
- i.e. non-conventional feed ingredients like former food products (FFPs)

WHAT GRAIN IS USED FOR WORLDWIDENearly half of the grain used worldwide flows into the production
of animal feed. Figures in million tonnes.Sources: International Grains Council 2015 (data including rice); FAO 2014Image: Image: Im

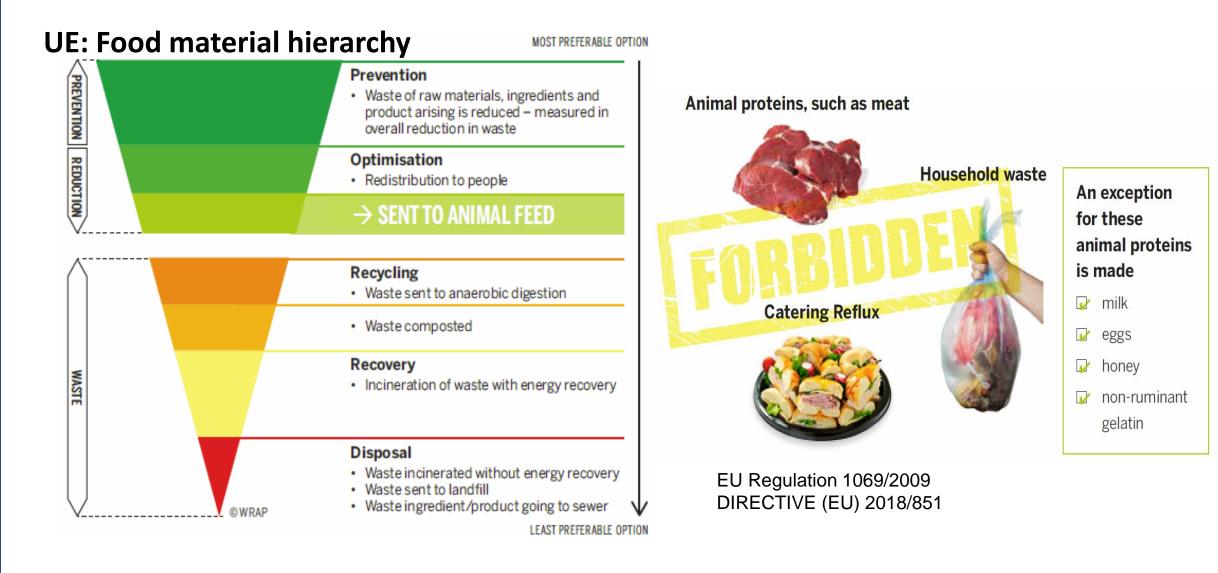
International Grains Council 2015. FAO

Pinotti et al., 2019

DEGLI ST

WHAT ARE FORMER FOODSTUFFS PRODUCTS?

- Foodstuffs manufactured for human consumption
- In full compliance with the EU food law
- No longer intended for human consumption for practical or logistical reasons (problems of manufacturing or packaging defects or other defects)


Regulation (EC) No 1069/2009 Regulation EC 68/2013

WHAT ARE NOT FORMER FOODSTUFFS PRODUCTS?

FFPs/ex-food

- Typical former foodstuffs are represented by leftover of the food industry such as biscuits, bread, breakfast cereals, chocolate bars, pasta, savoury snacks and sweets
- Different than Ecofeed in Japan!!!

Nutritional Evaluation

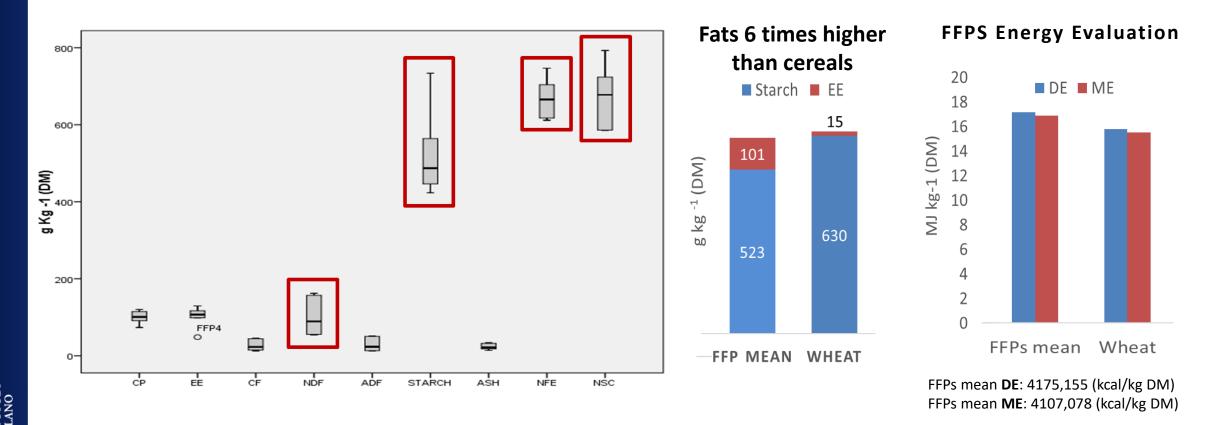
- Chemical composition
- *in vitro* digestibility
- Glycemic and Hydrolisis indexes

Safety Evaluation

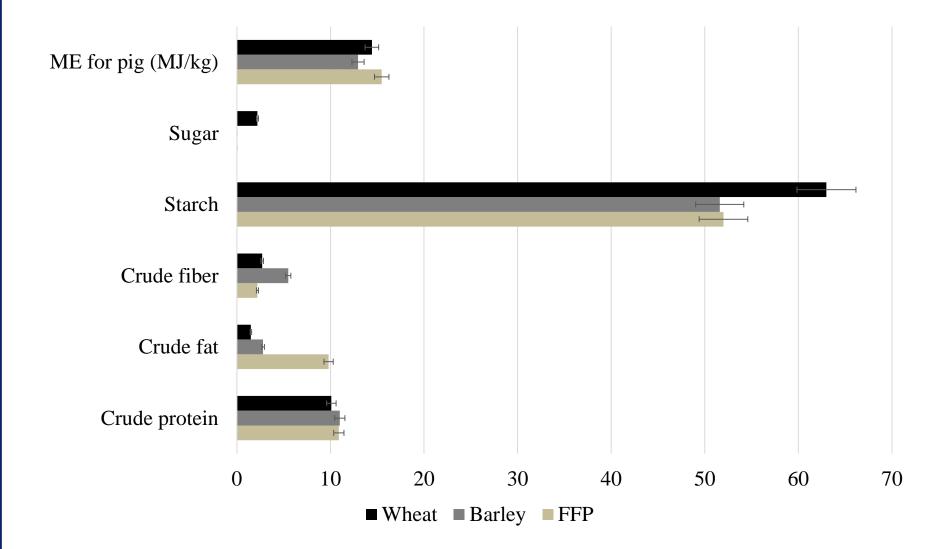
- Microbiological quality
- Presence of packaging remnants

Functional Evaluation

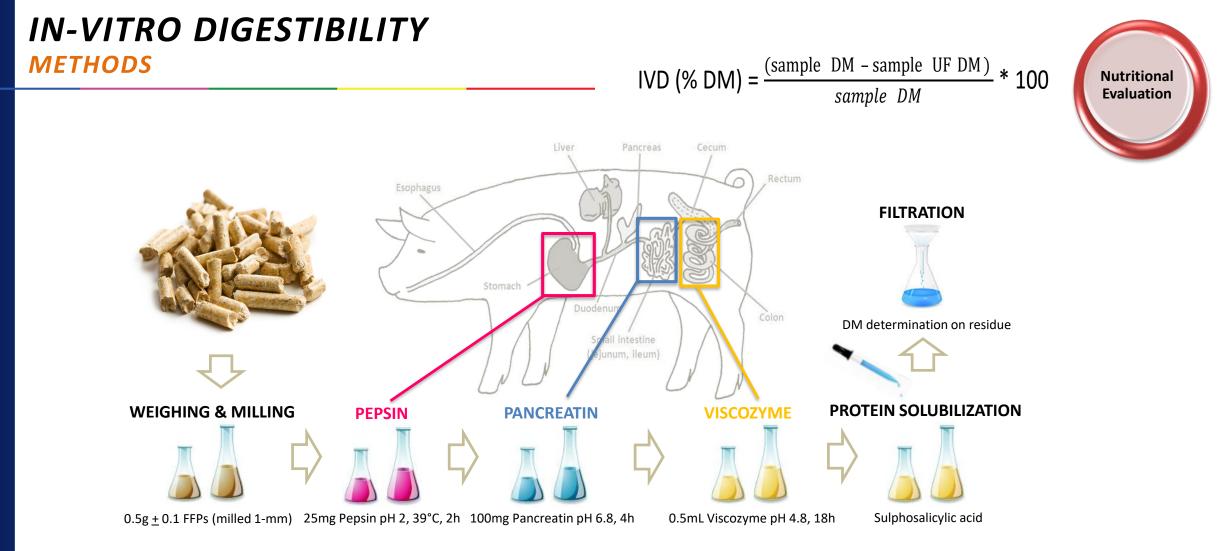
- Effects on piglet's growth performance
- *in vivo* digestibility
- Effects on piglet's gut microbiota


FFPS NUTRITIONAL COMPOSITION

Food Additives Contaminants	Food Additives & Contar	ninants: Part A			
	ISSN: 1944-0049 (Print) 1944-0057 (Online) Jou	rnal homepage: <u>http://www.tandfonline.com/loi/tfac20</u>			
	utritional evaluation o od) intended for pig n	of former food products (ex- utrition			
	iiromini, M. Ottoboni, M. Tretola di & L. Pinotti	, D. Marchis, D. Gottardo, V. Caprarulo, A.			
ITALIAN JOURNAL OF ANIMAL 2019, VOL. 18, NO. 1, 838–849 https://doi.org/10.1080/182805		Taylor & Francis Taylor & Francis Group			
PAPER OPEN ACCESS Check for updates					
	digestion and predicted glyce ex-food intended for pig nutr				
Matteo Ottoboni ^a ([Luciano Pinotti ^a (])), Marco Tretola ^a 🍺, Alice Luciano ^a 🝺, G	ianluca Giuberti ^b 🝺, Antonio Gallo ^c 🍺 and			
Animal (2019), 13:7, pp 1365–1375 © The Animal Consortium 2019 doi:10.1017/S1751731118003622					
27 124	cts and former foodstuffs reams to feed ingredient	s for upgrading food waste s for farm animals			
L. Pinotti ^{1†} , C. Giromini ¹ , M. Ottoboni ¹ , M. Tretola ¹ and D. Marchis ²					

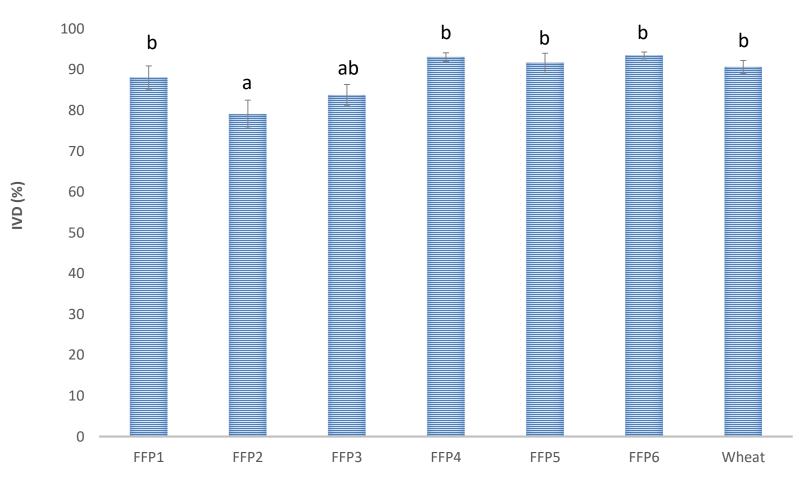

UNIVERSITÀ DEGLI STUDI DI MILANO

FFPS NUTRITIONAL COMPOSITION

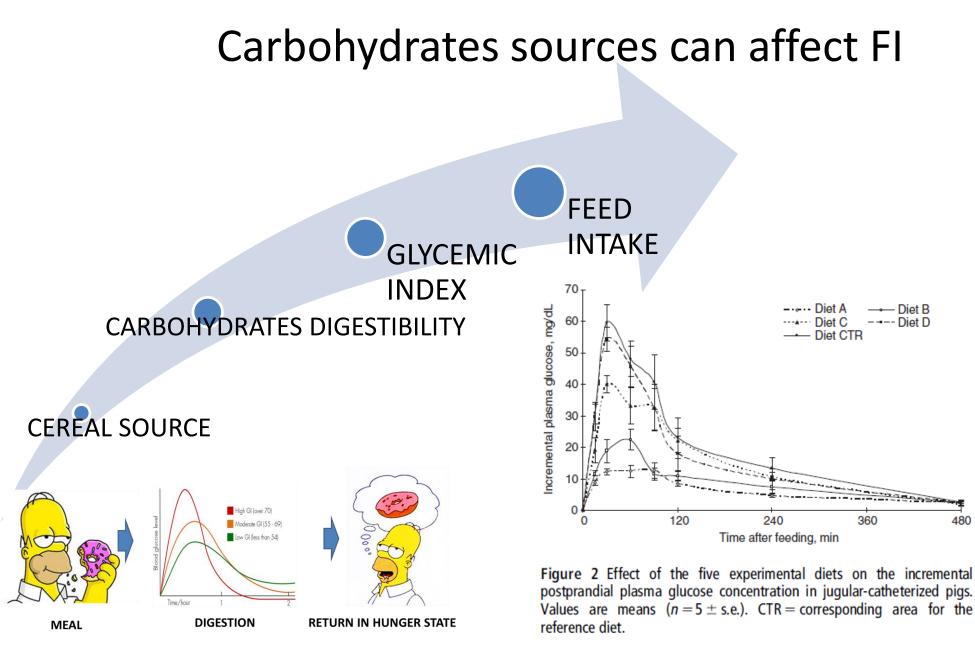


In comparison with cereals

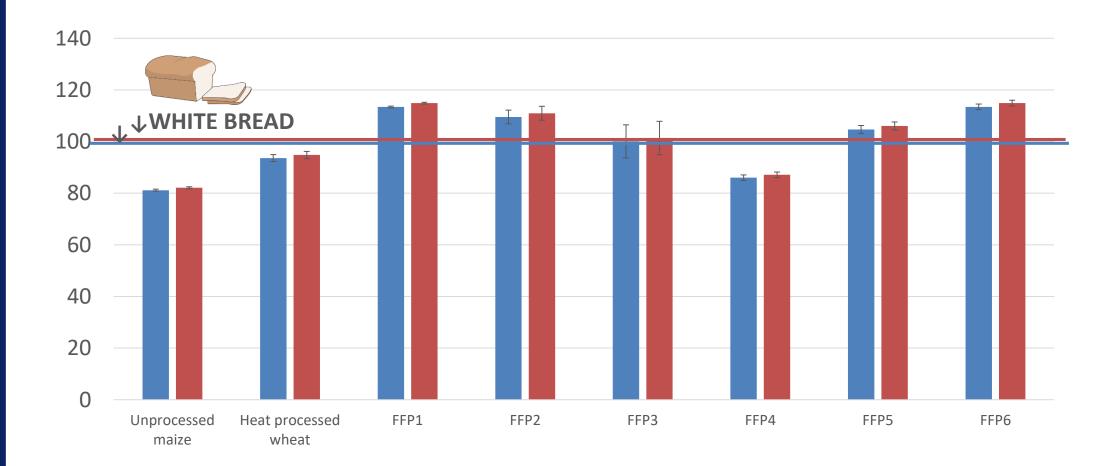
Adapted from Boisen & Fernández (1997). https://doi.org/10.1016/S0377-8401(97)00058-8



IN-VITRO DIGESTIBILITY RESULTS


In vitro Digestibility (IVD, %DM) of FFPs samples from three independent experiments and presented as least square means \pm SEM. Samples identified with different letters are significantly different (p < 0,05)

Nutritional Evaluation

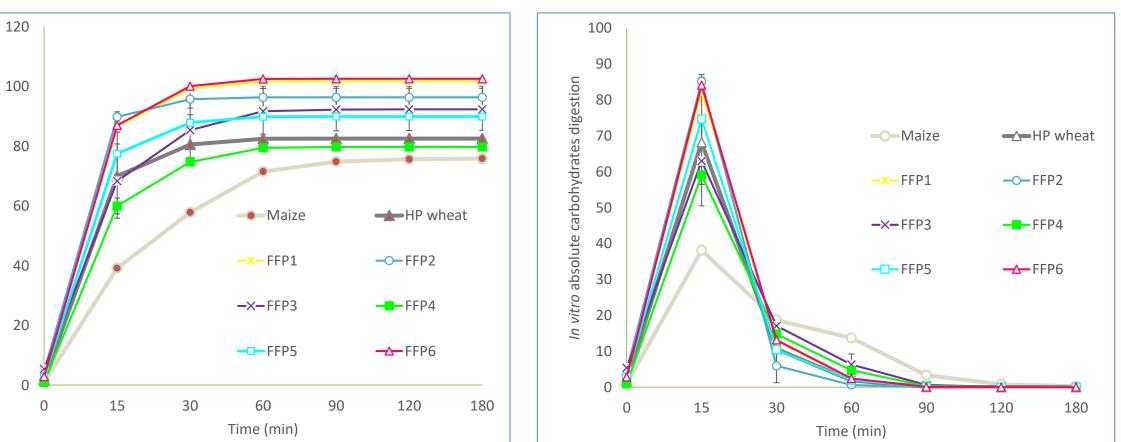


(van Kempen 2007; Menoyo et al. 2011; Giuberti et al., 2012a; Giuberti et al., 2012b; Doti et al., 2014;

Hydrolysis index & predicted Glycemic Index

Ottoboni et al., 2019

ITALIAN JOURNAL OF ANIMAL SCIENCE 2019, VOL. 18, NO. 1, 838–849 https://doi.org/10.1080/1828051X.2019.1596758

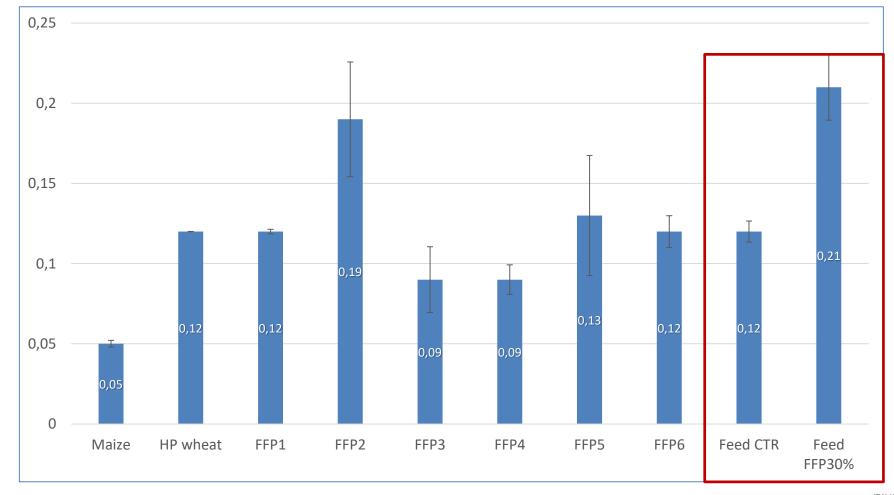


Results: glucose release over the time

Cumulative

In vitro cumulative carbohydrates digestion

20

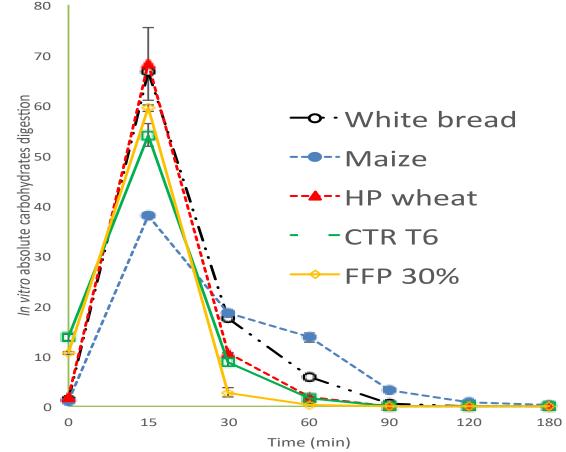


Absolute

OF ANIMAL SCIENCE Ottoboni et al., 2019 https://doi.org/10.1080/1828051X.2019.1596758

k – rate of carbohydrates digestion (rate/min)

Ottoboni et al., 2019 ITALIAN JOURNAL OF ANIMAL SCIENCE 2019, VOL. 18, NO. 1, 838–849 https://doi.org/10.1080/1828051X.2019.1596758 Summary : 1/4 (FFP as ingredient)


- FFPs are Nutritious novel feed
- High digestible
- Energy dense feedstuffs (high starch+Adequate fat content)in line with Liu et al. 2018 (J. Anim. Sci. 2018.96:4685–4692)
- Indexes like pGI and HI indicates
 - -FFPs are Rich in "ready to use" carbohydrates,

Summary : 2/4 (FFP in a pig compound feed)

CTR vs. FFPs -At similar pGI -*K* – **rate of carbohydrates** digestion has been increased by 75% in the FFP diet, indicating a quick digestion potential of the carbohydrate fraction

Nutritional Evaluation

- Chemical composition
- *in vitro* digestibility
- Glycemic and Hydrolisis indexes

Safety Evaluation

- Microbiological quality
- Presence of packaging remnants

Functional Evaluation

- Effects on piglet's growth performance
- *in vivo* digestibility
- Effects on piglet's gut microbiota

MICROBIOLOGICAL QUALITY OF FFPS

	Contaminant/threshold limit (log CFU g ⁻¹)									
Sample	TVC/6 ^a	Enterobacteriaceae/10 ^b	Escherichia coli/2ª	Coagulase- positive Staphylococci/4 ^a	Bacillus cereus/5ª	B. cereus spores/ 5 ^a	Clostridia/4 ^a	Yeasts/7 ^b	Moulds/7 ^b	Salmonella spp./ absent ^b
FFP1	4.98	3.65	< 2	< 2	3.20	< 2	< 1	4.38	3.40	Absent
FFP2	5.11	3.67	< 2	2	2.00	< 2	1.70	4.12	3.26	Absent
FFP3	4.90	< 2	< 2	< 2	2.00	2	1	3.00	3.88	Absent
FFP4	4.81	4.20	< 2	< 2	3.86	3.70	< 1	4.21	3.30	Absent
FFP5	4.51	3.81	< 2	< 2	3.08	2	< 1	4.60	3.40	Absent
FFP6	5.20	2.70	< 2	< 2	2.90	< 2	< 1	3.88	2.60	Absent

Sources: ^aHealth Protection Agency (2009). ^bRegulation (EC) No. 142/2011.

Hindawi Journal of Pood Quality Volume 2017, Article ID 1064580, 6 pages https://doi.org/10.1155/2017/1064580

WILEY Hindaw

Review Article

Former Food Products Safety Evaluation: Computer Vision as an Innovative Approach for the Packaging Remnants Detection

Marco Tretola,¹ Matteo Ottoboni,¹ Ambra Rita Di Rosa,² Carlotta Giromini,¹ Eleonora Fusi,¹ Raffaella Rebucci,¹ Francesco Leone,² Vittorio Dell'Orto,¹ Vincenzo Chiofalo,² and Luciano Pinotti¹

Safety Evaluation

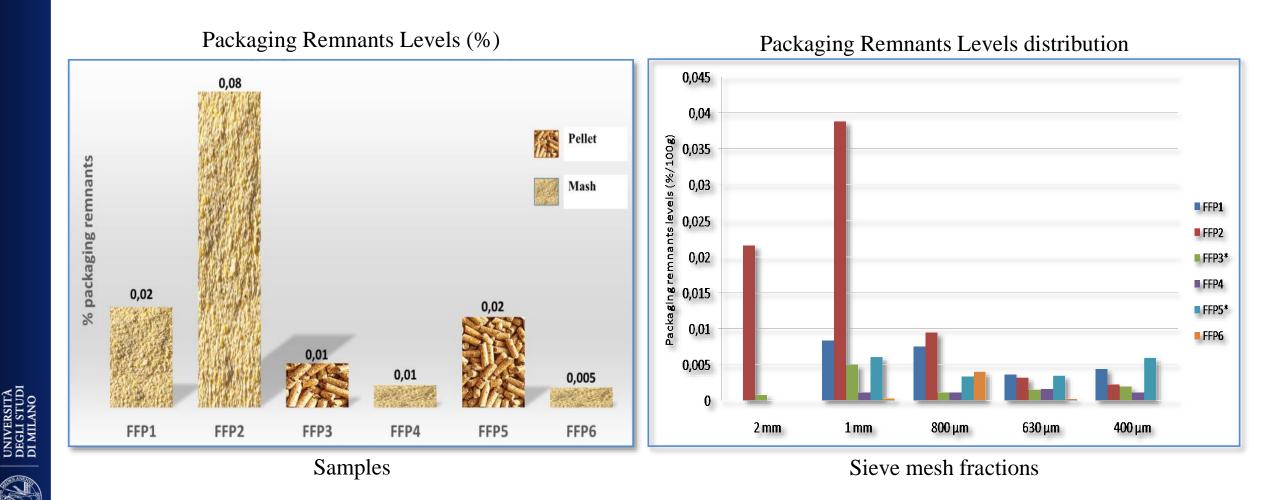
Feed

Bar in lower left corner is 1 cm

European Union Member States

"a zero tolerance for these traces is neither practical, nor proportionate to the risk"

German authorities tolerate the presence of packaging up to a level of **0.15%** L. v. Raamsdonk, et al., 2011. RIKILT Report 2011.002



PACKAGING REMNANTS DETECTION

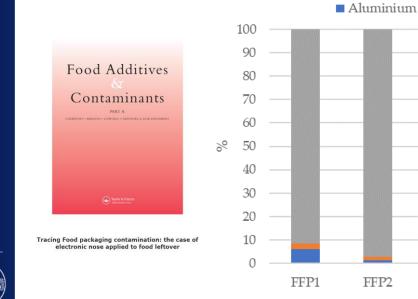
RESULTS (VALIDATED METHOD)

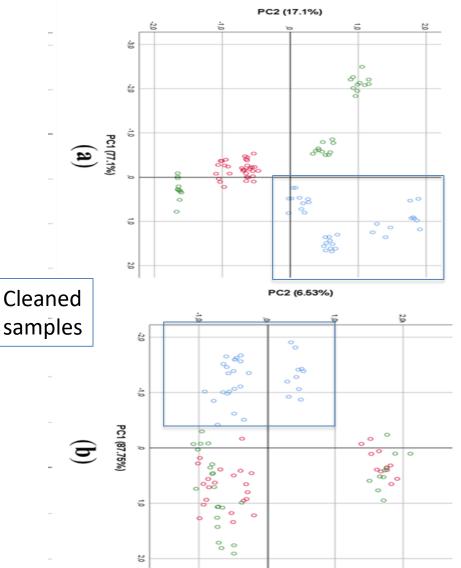
Tretola et al., 2017

Tracing Food packaging remnants by electronic

Paper board

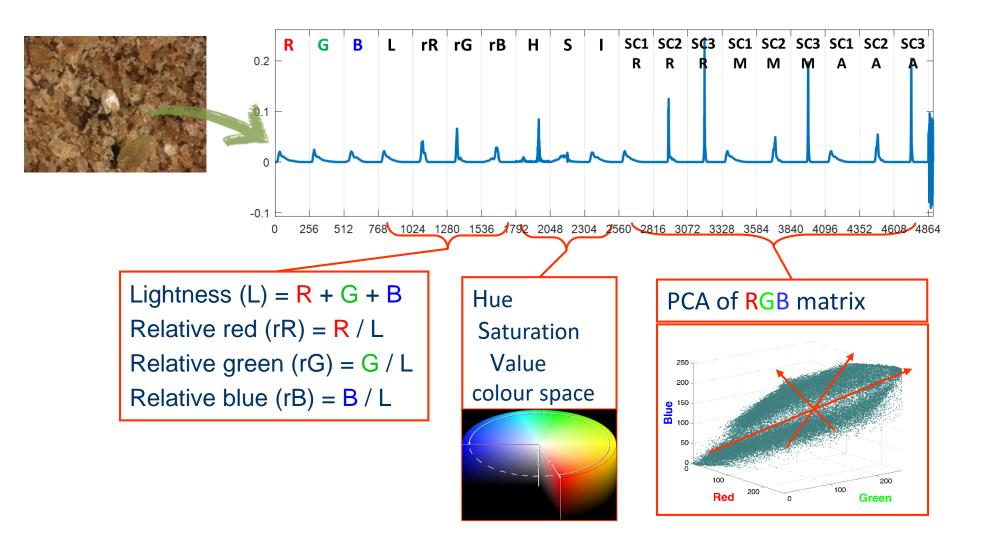
FFP5


FFP6


The packaging quantification ranged from a minimum of 0.017% w/w to a maximum of 0.214 % w/w. Paperboard was the most detected contaminant in all the samples from FFP processor 1 (from FFP1 to FFP4), while plastics were often the least abundant. (Tretola et al. 2019).

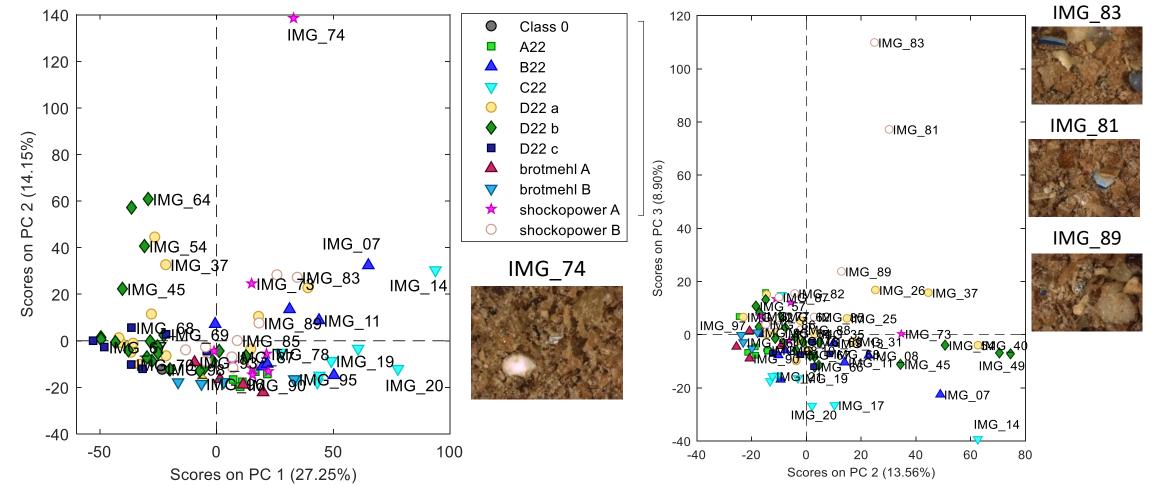
Plastics

FFP3


FFP4

Tretola et al., 2019 in press

IMAGE ANALYSIS- COLORGRAM


Ulrici & Pinotti, subm.

RESULTS

DEG

Ulrici & Pinotti, subm.

Results - Advantages and drawbacks of existing and innovative methods

Safety Evaluation

Method	Advantages	Drawbacks
Stereomicroscopy	-Quantification -Evaluation of heterogeneous distribution - Determination of packaging remnants nature	-Underestimation -Laborious/time consuming -Operator-dependent
Computer Vision	-Rapidity -Objectivity -Sensibility -Remote sample image analysis	 -No quantification -No determination of packaging remnants nature
Eletronic nose	-method promising ability to discriminate experimentally cleaned samples from the standard and spiked samples	-necessary to clarify the nature of the VOCs released by the packaging remnants

Summary: 3/4

Safety

FFPs showed:

- limited microbial load that can be improved/ salmonella absence;
- limited contamination by packaging remnants.
- High safety standards

Food Additives Contaminants	Food Additives & Contaminants: Pai	rt A
	ISSN: 1944-0049 (Print) 1944-0057 (Online) Journal homepage: <u>http:</u>	//www.tandfonline.com/loi/tfac20
q	ormer food products safety: mic uality and computer vision evalu ackaging remnants contaminati	uation of
M Bi	Tretola, A. R Di Rosa, E Tirloni, M Ottoboni, C Gir ernardi, V Dell'Orto, V Chiofalo & L Pinotti	omini, F Leone, C. E. M.
Hindawi Journal of Food Quality Volume 2017, Article ID 1064 https://doi.org/10.1155/2017/		
	e d Products Safety Evaluation: Comp Approach for the Packaging Remnan	
Carlotta Gi	ola, ¹ Matteo Ottoboni, ¹ Ambra Rita Di Rosa, ² romini, ¹ Eleonora Fusi, ¹ Raffaella Rebucci, ¹ Francesco Il'Orto, ¹ Vincenzo Chiofalo, ² and Luciano Pinotti ¹	Leone, ²
Food Additives Contaminants	Food Additives & Contaminants: Par	rt A
	ISSN: 1944-0049 (Print) 1944-0057 (Online) Journal homepage: <u>http:</u>	//www.tandfonline.com/loi/tfac20
	ravimetric quantitative determi ackaging residues in feed from f	
Git	useppina Amato, Rosanna Desiato, Tiziana Giova arco Tretola , Marilena Gili & Daniela Marchis	annini, Luciano Pinotti ,
FOOD ADDITIVES & CONTAMINA https://doi.org/10.1080/1944004		Taylor & Francis Taylor & Francis Group
81		Check for updates
	ckaging contamination: an electronic nose ap	•
Marco Tretola (2***, N and Luciano Pinotti	latteo Ottoboni 😳ª, Alice Lucianoª, Vittorio Dell'Orto 👩ª, Fed	lerica Cheli 🞯

Safety Evaluation

Nutritional Evaluation

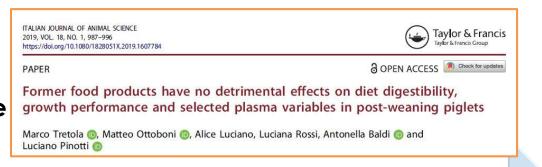
- Chemical composition
- *in vitro* digestibility
- Glycemic and Hydrolisis indexes

Safety Evaluation

- Microbiological quality
- Presence of packaging remnants

Functional Evaluation

- Effects on piglet's growth performance
- *in vivo* digestibility
- Effects on piglet's gut microbiota



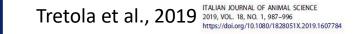
Partially replacing common cereal grains with 30% of FFPs in post weaning diets to evaluate effects on:

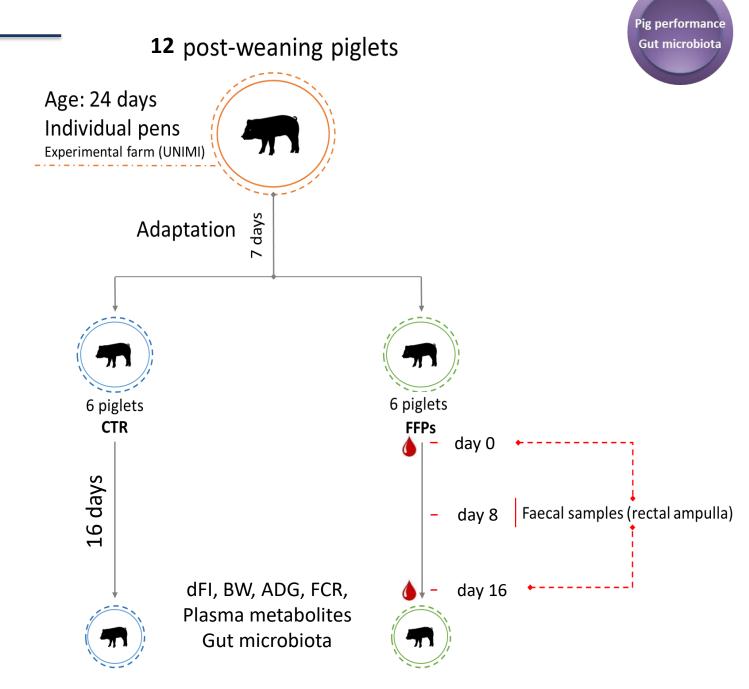
Feed Intake Growth Performance Feed Efficiency

Article Influence of Traditional vs Alternative Dietary Carbohydrates Sources on the Large Intestinal Microbiota in Post-Weaning Piglets

Marco Tretola *, Alice Luciano, Matteo Ottoboni[®], Antonella Baldi and Luciano Pinotti[®]

Faecal gut microbiota composition





MATHERIALS & METHODS

EXPERIMENTAL DESIGN

All pigs had *ad libitum* access to the feed and water.

MATHERIALS & METHODS EXPERIMENTAL DIETS

Diets were:

- Iso-nitrogenous,
- Iso-energetics.

Ingredients	CTR	FFPs
Former Foodstuffs	_	30
Barley	22.8	22.1
Dextrose	5	4,5
Flaked decorticated barley	4	0
Corn	6,5	4
Flaked corn	6,5	1
Vegetable fibres	1	1
Wheat	12,33	10,1
Flaked wheat	6	1
Wheat bran	3	2,48
Vegetable oil	1,5	0,5
Soy oil	1,5	0,5
Fish meal (65% protein)	2,5	2,6
Plasma powder	3,5	3,8
Whey powder	11	4,5
Soy f.e. 50	3,5	3,5
Soycomil R	5,5	4,55
L-lysine HCl	0,55	0,55
DL-methionine	0,23	0,23
L-threonine	0,25	0,25
L-tryptophan	0,08	0,08
Vitamin-mineral premix ¹	2,76	2,76
Total	100	100

UNIVERSITÀ DEGLI STUDI DI MILANO

ltem*	CTR	FFPS	P values
Initial Body Weight (kg)	9.20 ± 1.4	8.76 ± 1.8	0.68
Final Body Weight (kg)	14.1 ± 1.5	13.6 ± 1.1	0.61
Average Daily Gain (kg)	0.29 ± 0.1	0.31 ± 0.1	0.52
Average daily Feed Intake (kg)	0.45 ± 0.1	0.43 ± 0.1	0.81
Feed convertion ratio (kg/kg)	$1.55^{\text{A}} \pm 0.1$	1.39 ^B ±0.1	0.002
Initial ATTD (%)	78.0 ± 1.3	81.2 ± 1.8	0.06
Final ATTD (%)	78.6 ^a ± 1.2	83.3 ^b ± 2.4	0.02

Pig performance Gut microbiota

ATTD = Apparent total tract digestibility

*Value for each item is the mean \pm SD (standard deviations)

^{A,B} Values within a row with different superscripts differ significantly at P<0.01.

^{a,b} Values within a row with different superscripts differ significantly at P<0.05.

Tretola et al., 2019 ITALIAN JOURNAL OF ANIMAL SCIENCE 2019, VOL. 18, NO. 1, 987–996 https://doi.org/10.1080/1828051X.2019.1607784

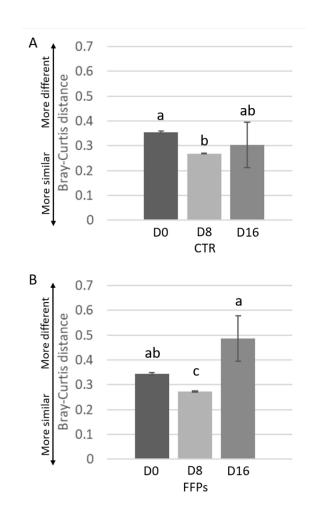
	C	ſR	FF		
Item	d 0	d 16	d 0	d 16	P values
Total Proteins (g/L)	49.8 ± 4.2	51.5 ± 4.2	49.7 ± 2.7	49.6 ± 4.1	0.45
Albumin (g/L)	27.7 ± 2.3	26.9 ± 3.1	26.5 ± 2.8	24.8 ± 2.1	0.22
Globulins (g/L)	22.1 ± 4.7	24.6 ± 5.4	23.2 ± 2.4	24.7 ± 2.3	0.96
Urea (mmol/L)	2.03 ^a ± 0.9	1.58 ^a ± 0.4	1.51 ^a ± 0.8	1.03 ^b ± 0.2	0.01
Glucose (mmol/L)	4.82 ^a ± 0.3	$5.08^{a} \pm 0.7$	5.65ª ± 1.1	6.18 ^b ± 0.9	0.04
Colesterol (mmol/L)	2.05 ± 0.3	2.33 ± 0.2	1.71 ± 0.4	1.97 ± 0.4	0.10

^{a,b} Values within a row with different superscripts differ significantly at *P*<0.05.

Alpha-diversity indexes (richness and evenness)

	D0		[08	D16 P values			P values	1
	CTR	FFPs	CTR	FFPs	CTR	FFPs	Т	G	TxG
Shannon's	6.19±0.5 ^{AB}	6.39±0.4 ^{AB}	6.46±0.12 ^A	5.96±0.49 ^в	6.25±0.27 ^A	5.76±0.31 ^в	0.57	0.001	0.71
Chao1	549.71±53.2	556.7±92.7	603.9±43	581.2±56.3	609.3±28.6	541.3±55.7	0.67	0.10	0.55
OTUs	470.6±51.3ªb	489.±86.4 ^{ab}	529.3±37.4ªb	500.0±62.5ªb	534.1±31.7ª	435.1±46.6 ^b	0.78	0.03	0.16
PD-whole tree	35.3±2.82	36.5±4.1	38.1±2.45	36.4±2.62	37.8±1.9	33.2±2.6	0.70	0.10	0.28

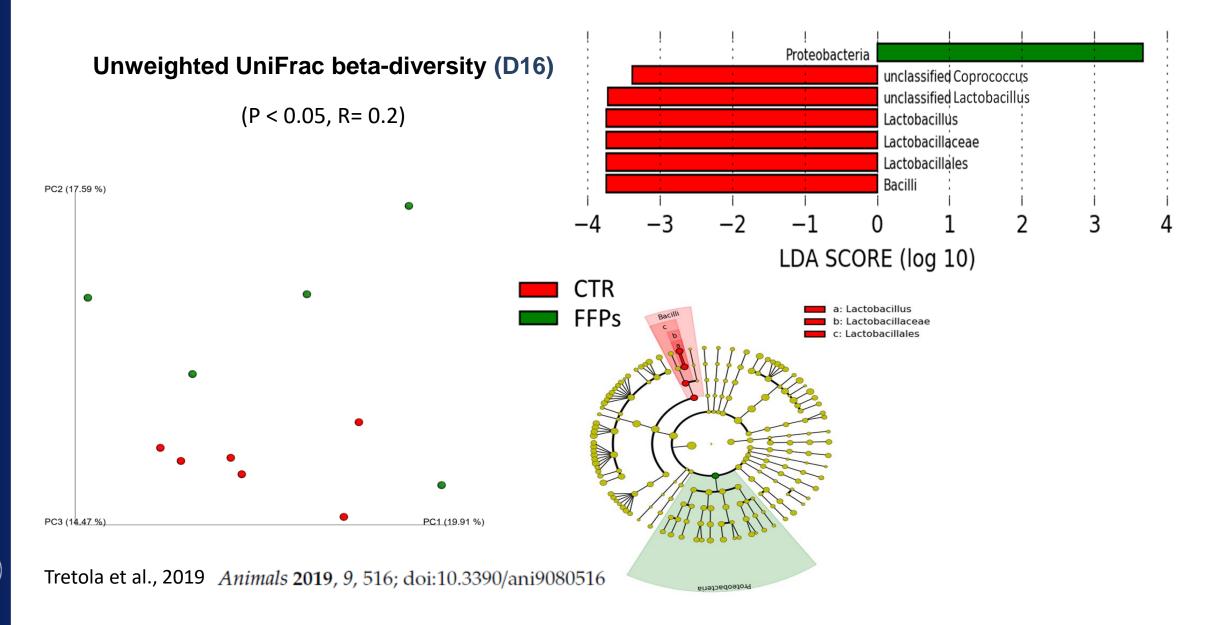
¹ Probability values for the effects of Time (T), Group (G) and T X G.; ^{a,b} Values within a row with different superscripts differ significantly at P<0.05. ^{A,B} Values within a row with different superscripts differ significantly at P<0.01.

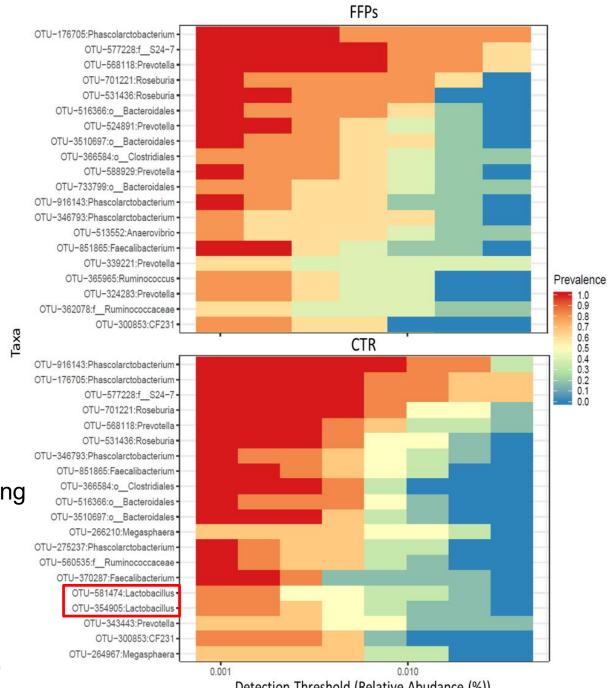


i.e: bacterial abundance (OTU number) and its biodiversity(Shannon's index) , decreased in the post-weaning piglets fed FFPs,compared to the CTR group

RESULTS: FAECAL MICROBIOTA (DAY 16)

- Pigs microbiota was
- D0 –uniform
- D8- no changes were observed
- D16 the unweighted UniFrac β-diversity analysis showed a slight clusterization in the microbial community between the two dietary groups
 - -FFPs led to a qualitative modification in the gut microbial community over time.





Tretola et al., 2019 Animals 2019, 9, 516; doi:10.3390/ani9080516

RESULTS: FAECAL MICROBIOTA

LefSe: Linear discriminant analysis Effect Size (D16)

RESULTS: FAECAL MICROBIOTA

Core Microbiota (D16)

In FFP's core microbiota there are no OTUs belonging to lactobacillus genus

Tretola et al., 2019 Animals 2019, 9, 516; doi:10.3390/ani9080516

Detection Threshold (Relative Abudance (%))

Summary : 4/4

- FFPs good alternative of cereal grains
- Highly digestible
 - Excellent energy/carbohydrates source

Growth Performance

Diet

- No detrimental effects on growth
- No gastrointestinal disorders
- Improved FCR (?) and feed digestibility (ATTD)

Faecal Microbiota

- FFPs decreased richness and evenness of gut microbiota
- \uparrow Proteobacteria \downarrow Lactobacillales

FFPS can be included up to 30% in piglets diets without detrimental effects on growth performance. Further studies are necessary to evaluate faecal microbiota composition in growing/finisher pigs

Advice-recommendation

• These results should be interpreted with care since they are case sensitive- i.e., they represent just some examples of different former food products that can be present on the feed market (more than 60 samples from 4 UE countries....)

General conclusions

Nutritional Evaluation	 FFPs as fortified version of cereal grains Highly digestible (depending on the composition) Excellent energy/carbohydrates source
Safety Evaluation	 Low Microbial load Low Presence of packaging remnants Methods for rapid packaging quantification need to be implemented
Functional evalution (<i>In viv</i> o)	 No detrimental effects on growth performance FFPs decreased richness and evenness of gut microbiota. ↑ Proteobacteria ↓ Lactobacillales

UNIVERSITÀ DEGLI STUDI DI MILANO

Thank you for your attention

Contact: luciano.pinotti@unimi.it