

Environmental impacts of housing and manure management in European pig production systems

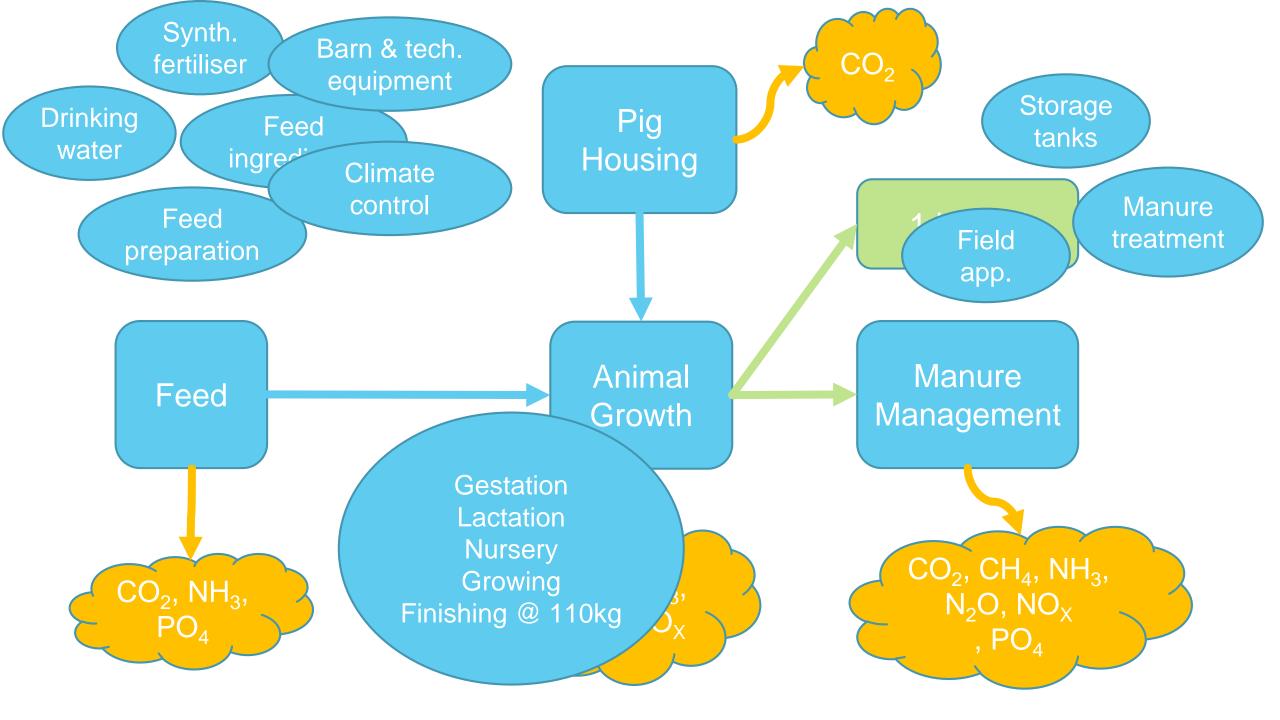
Presenting: Georgios Pexas

Co-authors: Stephen Mackenzie, Michael Wallace, Ilias Kyriazakis

Introduction

- Pig production systems significantly contribute to the environmental impacts arising from livestock
- Manure management is regarded as an important source of GHG emissions
- A great variety of factors affect manure composition at pig housing and consequently the environmental impact of pig systems
- There is a need to evaluate environmental impact of pig production systems from a whole farm perspective, considering all the components and their interactions

Aim & Objectives


Assess the environmental performance of a European pig production system through a holistic approach

Identify potential environmental impact hotspots associated with the pig housing and manure management components, through a sensitivity analysis

Assess the potential for environmental impact reductions of modifications in the pig housing and manure management components, through an alternative scenario analysis

Life Cycle Assessment

- Model: "Cradle-to-gate" life cycle assessment (LCA)
- Data: Danish, integrated, pig farming systems
- Functional unit: 1 kg pig live weight
- Environmental impact categories (EICs):
 - ► Global Warming Potential (GWP): kg CO₂ eq.
 - Acidification Potential (AP): kg SO₂ eq.
 - ► Eutrophication Potential (EP): kg PO₄⁻⁻⁻ eq.
 - Non Renewable Resource Use (NRRU): kg Sb eq.
 - Non Renewable Energy Use (NREU): MJ
- Uncertainty Analysis: Monte Carlo simulations

Sensitivity Analysis

Local, "one-at-a-time", Min & Max values (Chiu & Lo, 2018)

 \blacktriangleright Relative sensitivity $> 1\% \rightarrow$ Environmental Impact Hotspot (EIH)

Parameter - EIH	Variation	% Relative sensitivity					
Barn insulation	Max	NREU: 5.21% ↓	AP: 1.36% ↓	GWP: 1.26% ↓			
In-barn temperature	Max	AP: 1.06 - 5.15% 个	NREU: 1.30 - 4.40% 个	GWP: 1.15 – 1.30% 个			
Slurry dilution	Max	AP: 40.4% ↓	EP: 19.1% ↓	NRRU: 5.17% ↓			
Ventilation system efficiency	Min	NREU: 23.1% 个	GWP : 8.78% 个	AP: 1.21% ↑			
Frequency of slurry removal	Max	AP: 10.3% ↓	EP: 3.81% ↓	NRRU: 1.04% ↓			

Manure management alternative scenarios

Baseline
9 months storage
Slurry tanker with trailing hose

N 75%

P 90% K 100% In-house slurry acidification

+ H_2SO_4 and CaCO₃

Operation ofacidificationplant

Screw press slurry separation

100km from farm for application

Broadcast spreading & rapid incorporation

N 65% solid fraction

Anaerobic digestion of slurry

Centralised AD plant

25 days prestorage

N 85% digestate

Manure management alternative scenarios

Comparison to baseline - % change in environmental performance Parallel Monte Carlo simulations, 1000 runs

	In-house slurry acidification	Screw press slurry separation	Anaerobic digestion of slurry
GWP	+8.10%	+6.44%	-9.24%
AP	-28.1%	+62.6%	+6.47%
EP	-14.2%	+4.47%	+8.13%
NRRU	+45.3%	+35.0%	-34.1%
NREU	+2.26%	-2.26%	-40.1%

Pig housing alternative scenarios

4 manure management scenarios X 5 pig housing scenarios

"Good" & "Poor" farm management practices

Pig housing scenario	Baseline pig	± Level of slurry dilution		± Frequency of slurry removal		± Ventilation efficiency		± Barn insulation		± In-barn temperature	
Parameter	housing										
Total Ammoniacal Nitrogen (%)	70.5	62.5	78.5								
Slurry removal regime (days)	30			1	>30						
Fan efficiency (m ³ / h W)	20.4					24.5	16.3				
Barn insulation (U-value)	1							0.26	4		
Temperature (C°)	Average T									Min	Max

Pig housing – manure management "interactions"

Pig housing scenario	EIC	Mean % change in El across all manure management scenarios				
		"Poor" management	"Good" management			
Barn insulation	NRRU	+ 6.64 - 16.0%	- 1.60 - 4.20%			
	NREU	+ 8.99 - 15.8%	- 2.21 - 3.88%			
Ventilation system efficiency	NREU	+ 1.83 – 4.61%	- 1.85 - 3.08%			
	GWP	+ 1.22 – 1.55%	- 0.82 - 1.43%			
Slurry dilution	AP	+ 1.98 – 6.74%	- 1.95 – 5.31%			
	EP	+ 0.26 – 2.51%	- 0.39 - 1.06%			
Frequency of slurry removal	AP	N.A	- 0.51 – 5.45%			
	EP	N.A	- 0.07 - 3.26%			

Conclusions

- In house slurry acidification can potentially be applied in a variety of pig production systems and effectively reduce their environmental impact for AP & EP
- Modifications in pig housing related parameters can significantly affect the environmental performance of the manure management component, across all EICs considered in this study.
- If it is not possible to improve farm management practices, it is important to maintain the "typical" standards
- Primary data collection efforts should be intensified to allow for better modelling of the alternative strategies

Thank you for your attention!

Department for Environment Food & Rural Affairs

Related websites

- http://pigsys.eu/
- https://www.ncl.ac.uk/nes/research/projects/pigsys.html