

Histomonosis – new approaches on disease prevention

Dieter Liebhart¹ and Michael Hess^{1,2}

¹Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health,

University of Veterinary Medicine, Vienna, Austria

²Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), Vienna, Austria

Veterinärmedizinische Universität Wien (Vetmeduni Vienna)

Recent investigations to prevent the disease

Histomonosis

- synonyms: blackhead disease, enzootic typhlohepatitis
- turkeys and chickens are the mainly affected birds
- transmission: exclusively horizontal, directly and via the vector Heterakis gallinarum
- clinical signs: drowsiness, dropping of wings, sulfur-colored diarrhea
- course of disease is variable low morbidity to high mortality
- common pathological findings
 - inflammation of caecum and/or liver

Lesions in the liver and the caeca of a turkey suffering from histomonosis

Histomonas meleagridis

flagellate

- spherical to amoeboid shape, about 10 µm in diameter
- morphology:

smears of histomonads from culture (Giemsa stain)

histomonads in the liver of a chicken (PAS stain)

- anaerobic metabolism
- Iow tenacity and viability outside the hosts
- intermediate host Heterakis gallinarum bear histomonads for years

Outbreak of histomonosis in a turkey flock

Outbreak of histomonosis in a turkey flock

turkeys – case PA14/21403

Post mortem

chickens – case PA09/12408

Prophylaxis and therapy

first reports on effective drugs against histomonosis

- **arsenicals** (Tyzzer, 1923, J Exp Med. 37:851-873)
 - not used in Europe
- nitroheterocyclic compounds (Waletzky *et al.*, 1950, Science 111:720-721)

previously used drugs against histomonosis

	prevention	therapy		
	nitrofuran	nitroimidazole		
mode of action	undergoes reduction and eventually creates oxygen radicals such as superoxide and hydrogen peroxide which have a toxic effect (Maya <i>et al.</i> , 2003, Biochem Pharmacol. 65:999-1006)	inhibition of nucleic acid synthesis by disrupting the DNA of anaerobic microorganism (Müller <i>et al.</i> , 1976, in Biochemistry of Parasites and Host-Parasite Relationships, 537–544)		

food safety regulations were implemented in the last years in the EU and other industrial countries

ban of nitroimidazoles¹ and nitrofurans² in food producing animals

prophylaxis and therapy of histomonosis not possible

¹Commission Regulation (EC) No 1798/95, 1995, O.J. L174:20–21; ²Council Regulation (EC) No 1756/2002, 2002, O.J. L265:1–2;

Consequence: re-emergence of *H. meleagridis*

Year	Chicken	Turkey	Peacock	Species not known	Total
2004	1	9	1	1	12
2005	4	9	0	0	13
2006	4	5	0	1	10
2007	10	6	0	0	16
2008	7	6	1	0	14
Total	26	35	2	2	65

(Hauck and Hafez, 2010, Avian Dis. 54:1021-5)

Case	Date of diagnosis (month, year)	Type of production	Age of birds (weeks) at which clinical signs were noticed	Farm location (voivodeship)	Clinical & postmortem diagnosis (Yes/No)	Confirmation by PCR (Yes/No)	Undertaken therapy (Yes/No)
1	11.2002	BB	40	Mazovian	Yes	No	No
2	01.2010	BB	16	Mazovian	Yes	Yes	Nd
3	01.2010	BB	16	Lubusz	Yes	Yes	Yes
4	02.2010	BB	44	Mazovian	Yes	No	Nd
5	12.2010	BB	44	Warmian-Masurian	Yes	No	Yes
6	03.2011	BB	40	Mazovian	Yes	No	Yes
7	03.2011	CL	25	Greater Poland	Yes	Yes	Nd
8	03.2011	CL	51	Mazovian	Yes	Yes	Yes
9	08.2012	BB	19	Warmian-Masurian	Yes	No	Yes
10	02.2014	BB	42	Mazovian	Yes	Yes	Nd

(Dolka et al., 2015, Vet Res Commun., in press.)

vetmedun

Recent outbreaks of histomonosis in turkeys

3rd Intern. Symp. on Parasite Inf. in Poultry, Vienna 2016

Experimental histomonosis as infection model

clonal culture of *H. meleagridis*

- H. m./Turkey/Austria/2922-C6/04 passage(P) 21
- infection with histomonads via cloaca
- group of birds kept in pens on deep litter
- host age 14 days of life

turkeys

- severe clinical signs of histomonosis
- causes up to 100% morbidity and mortality of infected and in-contact birds

chickens

absence of clinical signs, no mortality

rapid spread of the parasite from infected to in-contact birds

(Hess et al., 2006, Avian Pathol. 35:280-5)

(Liebhart *et al.*, 2008, Avian Dis. 52:168-72, Liebhart and Hess, 2009, Avian Pathol. 38:223-227)

layer chicks of different breeds

(Zahoor et al., 2011, Avian Dis. 55:29-34.)

Experimental infection of layers

Recent improvements in diagnosis in laboratory diagnosis

PCR

several protocols were developed

(Huber et al., 2005. Vet Parasitol. 131, 311–316; Hafez et al., 2005. Avian Dis. 49, 366–370; Grabensteiner and Hess, 2006. Vet Parasitol. 142, 223-230; Bleyen et al., 2007. Vet Parasitol. 143, 206-213, Landman et al., Avian Pathol., 2015, in press; Hussain et al., Vet Parasitol., accepted for publication)

histological detection tools

■ *in situ* hybridisation (ISH)

□ using oligonucleotide probes (Liebhart et al., 2006. J Comp Pathol. 35, 237-242)

immunohistochemistry □ using polyclonal antibodies (Singh et al., 2008. Exp Parasitol.118, 505-513)

histomonads in the bursa of Fabricius of a turkey

vetmeduni

histomonads in the liver of chicken

vetmeduni vienna

in countries that observe outbreaks of histomonosis

urgent need to prevent histomonosis in poultry flocks

- high severity of the disease
 - □ suffering of infected birds animal welfare considerations
 - $\hfill\square$ losses in turkey and chicken flocks
 - $\hfill\square$ decrease of egg production in layers

Topics of the lecture

Recent investigations to prevent the disease

pharmaceuticals

plant derived compounds

Pharmaceuticals

recently tested drugs

	paromomycin	nifurtimox		
medicinal category	aminoglycosid antibiotic nitrofuran			
effectivity	reduction of mortality of turkeys ¹	reduction of liver lesions and mortality of infected turkeys ²		
application	prophylactic	prophylactic		
adverse effects / license	prophylactic use causes antibiotic resistance of intestinal bacteria ³	antimicrobials of this group are banned in many countries		

¹Lindquist, 1962, Am J Vet Res. 23:1053-1056; Bleyen *et al.*, 2009, Vet Parasitol. 165: 248-255; van der Heijden *et al.*, 2011, Tijdschr Diergeneeskd. 136:410-416; Hafez *et al.*, 2014, Arch Anim Nutr. 64:77–84;
 ²Hauck *et al.*, 2010, Avian Dis. 54:28-32;
 ³Kempf *et al.*, 2013, Vet J., 198:398-403;

vetmeduni vienna

Plant derived compounds

botanical / herbal product	minimal lethal concentration (MLC) <i>in vitro</i> (12 - 48h)	in vivo effect	supplementation	host species tested	reference	
Cinnamomum aromaticum essential oil	0.5 μl/ml	not done (n.d.)	-	-	7	
Citrus limon pericarps essential oil	1 µl/ml	n.d.	-	-	2enner <i>et al.</i> , 2003, Parasite 10:153–157.	
Allium sativum essential oil	1 µl/ml	n.d.	-	-		
Protophyt® oils from cinnamon, garlic, rosemary, lemon	-	30% reduction of mortality	0.2% via feed and 0.3% via drinking water	turkey	Hafez and Hauck, 2006, Arch Anim Nutr. 60:436–442.	
cassia oil	0.60 µl/ml	n.d.	-	-		
carvacrol	0.5 µl/ml	n.d.	-	-	Grabensteiner et al., 2007,	
thyme rosemary mixture essential oil	0.55 µl/ml	n.d.	-	-	Parasitol Res. 101:193-199.	
Q <i>uillaja saponaria</i> saponin	0.90 µl/ml	n.d.	-	-		
RepaXol® (blend of double-coated oregano, cinnamon, thyme, citrus fruit extract, and capsicum essential oils)	1.25 µl/ml	n.d.	-	-	Hauck and Hafez, 2007, Avian Dis. 51:880–883.	
blend of double-coated cinnamon, thyme, citrus fruit extract, and capsicum essential oils	1.25 µl/ml	n.d.	-	-		
coated grapefruit seed extracts	2,5 µl/ml	n.d.	-	-		
Thymus vulgaris ethanolic extract	5 mg/ml	100% mortality	1% via drinking water	turkey		
Serenoa repens ethanolic extract	5 mg/ml	100% mortality	1% via drinking water	turkey	Grabensteiner et al., 2008,	
Vitis vinifera ethanolic extract	5 mg/ml	91.7% mortality	1% via drinking water	turkey	Parasitol Res. 103:1257-1264.	
Cucurbita pepeethanolic extract	5 mg/ml	100% mortality	1% via drinking water	turkey		
Peganum harmala ethanolic extract	1.65 mg/ml	n.d.	-	-	Arshad, et al., 2008, Phytother	
Eucalyptus globulus	indeterminate	n.d.	-	-	Res. 22:1533–1538.	
Aromabiotic [™] derived from tropical plants	not available - no effect	n.d.	-	-		
Enteroguard™ lyophilized garlic and cinnamon infusion with active compounds allicin and cinnemaldehyde and other thiosulfonates	not available - growth inhibition	100% mortality	500 ppm	turkey	van der Heijden and Landman, 2008, Vet Parasitol. 154:1–7; van der Heijden and Landman, 2008, Avian Pathol. 37:45-50.	
Protophyt SP™ oils from cinnamon, garlic, rosemary, lemon	not available - no effect	94-100% mortality	3000 ppm via feed	turkey		
Protophyt B™ oils from cinnamon, garlic, rosemary, lemon	not available - growth inhibition	100% mortality	0.2 % via drinking water	turkey		
Artemisia annua-derived materials (i.e. dichloromethane extracts of leaves and pure artemisinin	1.0 mg/ml or growth inhibition	turkeys: 85-100% mortality; chickens: no reduction of severe lesions in caecum and liver	0.1% via drinking water or 100 ppm via feed	chicken and turkey	Thofner <i>et al.</i> , 2012, Avian Pathol. 41:487–496.	

Vaccination against histomonosis

experimental approaches to protect turkeys

vaccination with a clonal culture of *in vitro* attenuated histomonads (Hess *et al.*, 2008, Vaccine 26:4187-4193)

 Kloné
 H. m./Turkey/
Austria/2922-
C6/04
 Kloné
21

 vaccine candidate
 challenge isolate

Infection with virulent histomonads and treatment (Bleyen et al., 2009, Avian Pathol. 38:71-76)

application of intracloacally passaged low-virulent histomonads (Nguyen Pham et al., 2013, Vet Parasitol. 196:307-313)

oral vaccination of turkeys

- partial protection 2 weeks post vaccination: 4 of 14 birds survived the challenge (group CW2L)
- full protection of orally vaccinated turkeys challenged after 4 week post vaccination (group CW4L)

(Liebhart et al., 2010, Avian Pathol. 39:399-403)

Protection of chickens following vaccination

(Liebhart et al., 2013, Avian Pathol. 42:79-84)

vetmedun

vienna

Investigations on the vaccine

Previous investigations on the immune response against histomonosis $^{\vee}$

Previous investigations

Clarkson, 1963, Immunology 6:156-168; Hess *et al.*, 2008, Vaccine 26:4187-4193; Bleyen *et al.*, 2009, Avian Pathology 38:71-76)

Intestinal antibodies (IgG, IgA and IgM) of chickens are increased following infection (Windisch and Hess, 2010, Parasite Immunology 32:29-35)

 chickens have of a more effective innate immune response in the caecum than turkeys (higher expressions of IL-1β, CXCLi2 und IL-6 mRNA)

and

specific immune cells (CD4+, CD8α+, CD28+ and CD44+) and cytokines (IL-1β, CXCLi2, IFN-γ, IL-13, IL-4 und IL-10) are severely increased in infected livers of turkeys. (Powell *et al.*, 2009, Parasite Immunology 31:312-327)

vetmedu

Studies on the effect of vaccination on the immune response

Effect of vaccination on immune cells

vetmedun

vien

- histomonosis is a re-emerging disease of poultry due to the ban of effective chemotherapeutics in Europe and the USA
- investigations were recently performed on pharmaceuticals, herbal products and vaccination
- experimental vaccination was shown to be a promising approach to protect turkeys and chickens from clinical histomonosis
- recent investigations on the immune reaction following vaccination and infection
 - Iow increase of different leukocytes following vaccination
 - measurable changes in T cell populations following infection with virulent histomonads
 - expression of cytokines of infected turkeys indicate activation of the type 2 immune pathway following infection with *H. meleagridis*

Thank you for your attention!

Veterinary Public Health

Veterinärmedizinische Universität Wien (Vetmeduni Vienna)