

Faculty of Agricultural and Nutritional Science CAL

Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

Network analysis of the group structure of horses on pasture using GPS data

Frederik Hildebrandt, Kathrin Büttner, Jennifer Salau, Joachim Krieter & Irena Czycholl

Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany fhildebrandt@tierzucht.uni-kiel.de

Session 21: Horse performance and welfare – Ethics Abstract No.: 31163

The 70th EAAP Meeting of the European Federation of Animal Science from 26th – 30th August 2019 in Ghent / Belgium

Introduction

Wilderness: 10 to 20 horses per herd (Waring, 2003)

Private keeping/ pension stable

Natural

habitat

- Process of group formation of horses presently not adequately investigated
- Anonymous subgroups? (Goldschmidt-Rothschild, 1978)
- Influence of newcomers and departures of horses

Aim of the study

Investigation of the contact structure and the group formation with the help of the **network analysis**

Data recording

- In total 53 horses in the study
- Open stable system (HIT-Aktivstall) in Northern Germany
- GPS-Sensors (QSTARZ BT-Q1000XT) taped on nylon collars
 - → Sampling frequency: 0.1 Hz
- 9 month data collection
 - → June 2018 February 2019
- Exemplary analysis of morning pasture time (60 minutes) with the help of network analysis of 30 days in October 2018

Network

- Nodes (\rightarrow Horses) and edges (\rightarrow Contact between horses)
- Definition horse contact
 - \rightarrow Two horses have contact if closer then **6 meters** in any coordinate

Density

- → Amount of actual edges against all possible edges
- \rightarrow From **0** (no edges) to **1** (all possible edges present)

Fragmentation

\rightarrow Amount of **network components** in relation to all nodes

- → Network component: Two nodes → Same component → Connected by at least one path through the network
- → Between 0 (entire network connected, one network component) and 1 (no edges, only isolated nodes)

Observation period (60 minutes)

• 10-minutes intervals \rightarrow 6 different networks

• 30-minutes intervals \rightarrow 2 different networks

Results & Discussion

10-minutes network

Density 0.04 Fragmentation 0.92

Results & Discussion

Density depending on the observation day and the chosen interval

Results & Discussion

Fragmentation depending on the observation day and the chosen interval

Summary

Density

- In total small values
- Increasing intervals
 - Higher density
 - Same course of curves

Fragmentation

 A few smaller values → identificable horse grouping → Indicator

- Allowance of interruptions between individual sampling points
 - → Contact definition of time
- Variation of the contact definitions
 → Contact definition of distance
- Analysis of complete time period
 → Different network parameters
- Usage of different functional areas of the stable system
- Individual contacts between horses

Contact definition of time

Contact definition of distance

Thank you for your attention!

This study is kindly supported by

