

University of Nottingham

Sustainable intensification of animal production: what does it mean?

Phil Garnsworthy Professor of Dairy Science The University of Nottingham, UK

70th Annual Meeting of the European Federation of Animal Science Ghent, Belgium, 27 August 2019

Foresight Report 2011 – The Future of Food and Farming

The Future of Food and Farming:

Challenges and choices for global sustainability

Data source: UN-ESA

University of

Foresight Report 2011 – The Future of Food and Farming

The Future of Food and Farming:

Challenges and choices for global sustainability

The challenges we face

- Balancing future demand and supply sustainably
- Addressing the threat of future volatility in the food system
- Ending hunger
- Meeting the challenges of a low emissions world
- Maintaining biodiversity and ecosystem services
 while feeding the world

Global food supply will need to increase without the use of substantially more land and with diminishing impact on the environment:

sustainable intensification is a necessity

Sustainability

Universitu of

Intensification

Increase in productivity per unit of land or other resource

Milk per hectare Pigs per sow per year Weight gain per day Feed conversion efficiency Sheep per shepherd Electricity per chicken shed

Intensification does NOT mean only moving from extensive to intensive systems

The Big Issues with Livestock

- Global demand for animal products is increasing
- Negative publicity about animal production
- Competition for land to grow animal feed versus human food
- Pressure on the environment

Universitu o

• Need more efficient use of resources

Our Task: To increase production efficiency whilst reducing environmental impact

Nottingham UK | CHINA | MALAYSIA Global consumption of meat is increasing

University of

Cattle = 65% of Total livestock GHG

Source: FAO

Negative publicity

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Climate Change and Land

An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

Summary for Policymakers

"Balanced diets,

featuring plant-based foods, such as those based on coarse grains, legumes, fruits and vegetables, nuts and seeds, and animal-sourced food produced in resilient, sustainable and low-GHG emission systems, present major opportunities for adaptation

and mitigation while generating significant co-benefits in terms of human health."

IPCC (2019) Section B6.2

Negative publicity – eat less beef Nottingham UK | CHINA | MALAYSIA

University of

Digestible amino acids supply

	Protein %	Digestibility %	Amino acid score	PDCAAS	DAA supply
Egg	12.5	98	121	118	14.8
Milk	3.3	95	127	121	4.0
Beef	31	98	94	92	28.5
Soya	13	95	96	91	11.8
Wheat	12.6	91	47	42	5.3

PDCAAS = Protein Digestibility–Corrected Amino Acid Score

Beef supplies 2.5 times more digestible amino acids than soya and 5.3 times more than wheat

World Land Utilisation 22% crops, 39% grass, 39% marginal

Feeding animals on grass and leftovers Nottingham UK | CHINA | MALAYSIA

University of

Van Zanten et al. (2018) Global Change Biology 24:4185–4194.

Defra stats 2010-2017

•50% products, 50% co-products

University of

- •Cereals and soya meal main ingredients
- •Poultry, pigs, dairy cows main species

University of Nottingham UK | CHINA | MALAYSIA UK | CHINA | MALAYSIA UK | CHINA | MALAYSIA

86% of the global livestock feed intake is not edible for humans

1 kg of meat requires 2.8 kg of humanedible feed for ruminants and 3.2 for monogastrics

Livestock consume one third of global cereal production and uses about 40% of global arable land

Livestock use 2 billion ha of grasslands, of which about 700 million could be used as cropland

Modest improvements in feed conversion ratios can prevent further expansion of arable land dedicated to feed production.

FAO: Mottet et al. 2017. Global Food Security 14, 1-8

- Environmental impact depends on origin of calves for fattening
- •Beef Suckler Herd
 - impact of breeding animals is allocated to beef
- •Dairy Herd
 - impact of breeding animals is allocated to milk

- Environmental impact depends on diet
- •Pasture/roughage
 - More enteric methane
- Feedlot/concentrates
 - Lower enteric methane
 - More N_2O from fertilizer
 - Faster growth rates

Feed Carbon

Feed CFP (g CO₂e/kg DM) of ingredients

University of

	CFP	LUC	Total
Grazing	329	69	398
Grass silage	304	78	382
Maize silage	163	90	252
Wheat	424	165	589
Sugar beet pulp	322	0	322
Soya bean meal	633	437	1070
Rapeseed meal	534	166	700

FeedPrint Database: Vellinga et al. 2012 Wageningen UR

Wilkinson & Garnsworthy (2017) J Agric Sci 155, 334-347

Diets based on Grazed Grass Grass silage Maize silage By-products

Wilkinson & Garnsworthy (2017) J Agric Sci 155, 334-347

Carbon sequestration

University of

Origin of Methane

Methane is an essential pathway for metabolic H₂ removal

Without methanogenesis:

- microbial fermentation is compromised
- cellulolysis activity is decreased
- digestive efficiency is compromised
- animals eat less feed
- performance is lower

Methane is influenced by diet

Dry matter intake

University of

Nottingham

- Forage to concentrate ratio
- Forage digestibility
- Dietary fat content
- Unsaturated fatty acids
- Dietary starch content

- Methane inhibitors
 - Monensin (banned in EU)
 - Saponins (short lived)
 - Condensed tannins (reduce NDF digestibility)
 - Essential oils (slower starch and protein degradation)
 - 3-NOP (3-nitrooxypropanol, targets methyl-coenzyme M reductase (MCR))

Methane variation between animals

Dry matter intake affects methane But large variation

between animals

University of

8

University of

- 2,000 cows, 21 farms
- Variation between and within farms
- Due to diet, milk yield and individual cow

Bell et al. (2014) Animal, 8:9, pp 1540–1546

Higher milk yield reduces methane by diluting maintenance and needing fewer replacements

But, higher milk yield may reduce fertility, leading to more replacements

Garnsworthy, 2004. Anim Feed Sci Technol, 112, 211-223

University of Nottingham UK | CHINA | MALAYSIA **Fertility affects methane per herd**

Garnsworthy, 2004. Anim Feed Sci Technol, 112, 211-223

Replacement rate, age at first calving and energy requirements

- Heritability of methane emissions is 0.1 to 0.3
- There is a lot of genetic and phenotypic variation (CV 10-30%)
- Methane ranges from 2 to 12% of Gross Energy Intake
- Reducing methane should save energy for use in milk synthesis
- Breeding could be a win-win solution

J. Dairy Sci. 102:7277–7281 https://doi.org/10.3168/jds.2018-15909 © 2019, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Short communication: Heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows

I. S. Breider,^{1,2} E. Wall,² and P. C. Garnsworthy¹* ¹School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom ²Department of Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh EH25 9RG, United Kingdom

RuminOmics (EU-FP7 project)

Linking the cow genome to the rumen microbiome, feed efficiency and impact

Measured CH₄ and sampled 1,000 cows

Wallace, R.J., et al. (2019) Science Advances 5, EAAV8391.

University of Nottingham Should we breed for low methane?

Methane is related to milk yield and feed efficiency

Reducing methane does NOT increase milk yield High emitters generally digest forage more efficiently Lower methane should not be the only breeding goal

RuminOmics (EU-FP7 project)

Linking the cow genome to the rumen microbiome, feed efficiency and impact

Measured CH₄ and sampled 1,000 cows

A core microbiome is heritable and is related to methane emissions and feed efficiency.

The cow controls her own rumen microbes – or the microbes control the cow.

Wallace, R.J., *et al.* (2019) A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. *Science Advances* 5, EAAV8391.

University of Nottingham UK | CHINA | MALAYSIA Welfare in intensive systems

Øetting fram Deliniv Scsieg dealing Cartice (CDSC)

- Opened 2008
- Sands bled sed cullovelars
- Rocceltientnikkintigation
- Stattendfloors
- Spacertizetneriesed faction 8.8 to 1040 norempter tes vin robot
- Milkiglelchateretsspestrom
- Co,500/contil2,5000 L/cow/y
- Bassatige@el/sC10.5nt 2vent
 tiones feurom6@toded00
- Spanceness. 8 en f eperecow
- Freiktiking inthe force and L/cow/y

sustainability

ARTICLES

https://tioLorg/10.1038/141892-018-0128-3

The environmental costs and benefits of highyield farming

Andrew Balmford^{1,*}, Tatsuya Amano^{1,1}, Harriet Bartlett^{1,1}, Dave Chadwick³, Adrian Collins⁴, David Edwards³, Rob Field⁶, Philip Garnsworthy^{3,}, Rhys Green¹, Pete Smith⁸, Helen Waters^{1,1}, Andrew Whitmore^{3,9}, Donald M. Broom¹⁰, Julian Chara¹¹, Tom Finch^{1,4}, Emma Garnett^{3,1}, Alfred Gathorne-Hardy^{12,0,14}, Juan Hernandez-Medrano¹⁶, Mario Herrero^{3,14}, Fangyuan Hua¹, Agnieszka Latawiec^{14,18}, Tom Misselbrook⁴, Ben Phalan^{3,14,9}, Benno I. Simmons^{3,1}, Taro Takahashi^{4,20}, James Vause²¹, Erasmus zu Ermgassen¹ and Rowan Eisner¹

Detailed field data from five continents and almost 1,800 species reveal that for most species the impacts of agriculture are best limited by farming at high yields alongside sparing large tracts of intact habitat.

- Externality and land costs can covary positively: per unit production
- Land-efficient systems often produce lower externalities
- Farming at high yields (production per unit area) has considerable potential to restrict humanity's impact on biodiversity.

298 million cattle18% of world pop.2.5 Mt beef/year8.5 kg/animal

Sustainable intensification of animal production means:

- Increasing efficiency of converting feed into animal products
- Reducing environmental impacts
- Increasing profit
- All with high standards of animal welfare
- Production efficiency can be increased at all scales
- Often there are hidden inefficiencies at the system level
- Emissions, Profit and Efficiency are all linked
- Animal Production is vital to Future Food Security

Thank you for your attention

