Effect of aging on epigenetics of immune cells in dairy cattle

Helene Jammes¹, Aurélie Chaulot-Talmon¹, Charline Pontelevoy¹, Luc Jouneau¹, Christophe Richard¹, Valérie Gélin¹, Gilles Foucras²and Hélène Kiefer¹

¹UMR1198 BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France, ²UMR1225 IHAP, Université de Toulouse, ENVT, INRA, 31076 Toulouse Cedex 3, France

Part I – Epigenetics – Concepts – Generalities Part II – Original data from « Long Health program » Effect of aging on epigenetics of immune cells in dairy cattle

DNA Methylation is a covalent reaction

- Addition of methyl group
- Symetric manner
- Mainly in CpG context
- In mammals, 5-8% of CpG are methylated

DNA methyltransferases

• DNMT1

higher affinity for hemimethylated DNA than unmethylated DNA

maintenance of DNA methylation, fidelity of replication of inherited epigenetic patterns

(Bestor, 1992; Lei et al., 1996; Li et al., 1992)

DNA methyltransferases

• DNMT1

higher affinity for hemimethylated DNA than unmethylated DNA

maintenance of DNA methylation, fidelity of replication of inherited epigenetic patterns

(Bestor, 1992; Lei et al., 1996; Li et al., 1992)

• DNMT3A and DNMT3B

act as *de novo* DNA methyltransferases responsible for establishment of DNA methylation Patterns

(Hata et al., 2002; Okano et al., 1999)

S adenosyl methionine, donnor of methyl group

• SAM is one component of the one carbon metabolism

Hcy: Homocysteine; Mat: methionine adenosyl transferase; SAH: S adenosylhomocysteine; THF tetrahydrofolate;

5, 10-MTHF: 5, 10-methylenetetrahydrofolate; **5 Methyl THF**: 5 – methyl-tetrahydrofolate; **SHMT**: Serine hydroxymethyltransferase; **MTR**: Methyltetragydrofolate-homocysteine methyltransferase; **MTHFR**: Methylentetrahydrofolate

DNA methylation is also reversible

• Passive manner by absence of DNMT1 in nucleus

- ightarrow dilution throughout the cell division and DNA replication
- ightarrow loss of inheritability of DNA methylation

Kohli et Zhang, Nature, 2013

DNA methylation is also reversible

• Passive manner by absence of DNMT1 in nucleus

 \rightarrow dilution throughout the cell division and DNA replication \rightarrow loss of inheritability of DNA methylation

Active manner, enzymatically controlled

- TET enzyme family (Ten eleven translocation proteins)
- Deaminase (AID Activation induced cytidine deamination)
- Reparation enzyme (APOBEC Apolipoprotein B mRNA editing)
- Glycosylase (TDG Thymine DNA glycosylase)

- 5 hydroxymethylation,
- a new epigenetic marks with specific regulatory roles
- Mainly present in neurones

Kohli et Zhang, Nature, 2013

Apposition and erasure of DNA methylation contribute to a normal program driving gene expression profile and cell differentiation

> Opening of sensitive windows to environmental effects

- Influence of maternal environment (pre conceptionnal period; gestation) → Fœtal programming
- Paternal effect (pre conceptionnal period) → epigenetic maturity (acquisition and maintenance)

Epigenetic reprogramming controls the future of individual

Cross generations transmission of epigenetic information

Environment effect

1 - Effect on G0

- Alterations of cell specific marks
- Modifications of functionnality of genome
- 2 Fœtal programming for G1
- Alterations of fœtal epigenetic programming Somatic cells consequences at long terms Germinal cells consequences on fertility
- 3 Transmission inter-generationnal (G2)

Cross generations transmission of epigenetic information

Environment effect

1 - Effect on G0

- Alterations of cell specific marks
- Modifications of functionnality of genome
- 2 Fœtal programming for G1
- Alterations of fœtal epigenetic programming Somatic cells consequences at long terms Germinal cells consequences on fertility

3 – Transmission inter-generationnal (G2)

1 – Effect on G0

2 – Fœtal programming

- Alteration of DNA methylation apposition
- Alteration of spermaogenesis
- Alteration of fertility
- 3 Transmission trans-generationnal (G2)

Why DNA methylation can be used as biomarker

- Acquisition of methylation profiles during development
- Reversible
- Sensitive to environment
- Individual identity

Dependency to genomic sequence SNP → Loss or acquisition of cpG position Accumulation of modifications under environment effects Accumulation of stochastic errors during the life

 \rightarrow cell memory

DNA methylation can be used as biomarker using blood cells

• Hematopoietic cell differentiation Is dependent of methylation profiles

• Alterations of DNA methylation in blood cells reflect immunity diseases

Special Issue: Human Genetic

. . .

Cell

DNA methylation: a promising landscape for immune system-related diseases

Beatriz Suarez-Alvarez¹, Ramon M. Rodriguez², Mario F. Fraga² and Carlos López-Larrea^{1,3}

Tobacco exposure

DNA methylation can be used as biomarker in blood cells

• Hematopoietic cell differentiation Is dependent of methylation profiles

Alterations of DNA methylation reflect immunity diseases

Special Name Names DNA methylation: a promising landscape for immune system-related diseases

Beatriz Suarez-Alvarez¹, Ramon M. Rodriguez², Mario F. Fraga² and Carlos López-Larrea^{1,3}

• Alterations of DNA methylation reflect also no immune diseases

(Cancers, Obesity, Cardiovascular diseases, Autism....)

cancers MDPI	GENOMICS & INFORMATICS	Review Article The Management of Cardiovascular Risk through	Frontiers in Celtular Neuroscience en Celtures (Celtures)	ELEVIER About 1 (2001 1: 0)
Whole-blood DNA Methylation Markers for Risk Stratification in Colorectal Cancer Screening:	Descent Addres 2017 No. 1019. 2017 Research and a second and a second address and a second address ad	Epigenetic Biomarkers	Epigenetics and Autism Spectrum Disorder: Is There a Correlation?	Review Anide Blood DNA methylation as a potential biomarker of dementia: A systematic review
A Systematic Keview Janhavi R. Raut ^{1,2} , Zhong Guan ^{2,3} , Petra Schrotz-King ¹ , and Hermann Brenner ^{1,3,4,+}	A START AND A THE LAST THE READ STATE THE READ STATE OF BUT AND THE THE THE THE THE THE		denne Miller", Baharak Melahana ¹ and Rahad Miller ¹⁴	Peter D. Fransquet ^(*) , Paul Lacazo [*] , Kichard Saffer ^{**} , John McNeil [*] , Robyn Woodd [*] , Joanne Rym ¹²⁰⁰⁰

• Alterations of DNA methylation reveal environmental effects

ADL, 12, 140, 12, 1912–1148 Https://doi.org/10.1800/1.502234.2017.1423692	Taylor & Francis		
RESEARCH PAPER	OPEN ACCESS		
	A most destant and some summer law to		

Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA)

Lindsay M. Reynolds", Kurt Lohman", Gary S. Pittman[®], R. Graham Barr', Gloria C. Chi^a, Joel Kaufman^a, Ma Wan^b, Douglas A. Bel^p, Michael J. Blaha", Carlos J. Bodriguez" and Yongmei Liu"

EPIGENOMICS, VOL.10, NO.111 RESEARCH ARTICLE

Sylvia E Badon ^{III}, Alyson J Littman, Kwun Chuen Gary Chan, Mahlet G Tadesse, Patricia L Stapleton, Theo K Barmiler, Tanya K Sorensen, Michelle A Williams & Daniel A Enquobahrie

Published Online: 16 Oct 2018 | https://doi.org/10.2217/epi-2017-0169

Physical activity

SCIENTIFIC REPORTS

OPEN Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood

al. 22 Prinners 2017 Andres Cardenas³, Sheryi L, Bilas-Shiman³, Golareh Agha¹, Marie France Hirert¹, Augusto A Ultonjua¹, Dawn L, DeMes³, Xihong Lin³, Onitra J. Amaresitiwardena¹, Enily Oken³, Matther

Toxic exposure

O PLOS

DNA Methylation Signatures Triggered by Prenatal Maternal Stress Exposure to a Natural Disaster: Project Ice Storm

Lei Cao-Lei¹, Renaud Massart², Matthew J. Suderman³, Ziv Machnes², Guillaume Elgbeili⁴, David P. Laplante⁴, Moshe Szyf⁵, Suzanne King¹

Maternal stress

How analyze the DNA methylation ? A large panel of methodologies, at different scales

A large panel of methodologies to analyse the DNA methylation

A large panel of methodologies to analyse the DNA methylation

Part II – « LongHealth » INRA's Metaprogram leading by Pierre GERMON 2017-2020

Integrated management of ruminant health for a sustainable dairy production

LongHealth

Objectives

- to investigate the trade-offs between health traits, growth and milk production in biological and economical terms (WP1)
- to investigate the trade-offs between health, production and welfare using monitoring tools newly available among precision livestock farming solution (WP2)
- to decipher how interactions between genetics and epigenetics when either environmental changes (nutrition) or physiological changes (age) modulate the response to infection (WP3)

To explore the aging effect on monocyte methylome

An original model to explore the aging effect on monocyte methylome

- Cloned animals from the same cell line
- Each somatic nucleus is transfered in a single oocyte
- Epigenetic reprogramming drived by oocyte competences allows the embryonic development

An original model to explore the aging effect on monocyte methylome

- Cloned animals from the same cell line
- Each somatic nucleus is transfered in a single oocyte
- Epigenetic reprogramming drived by oocyte competences allows the embryonic development
- Two groups of cloned animals with different ages, managed in the same farm under the same conditions

Holstein females generated by **somatic cell nuclear transfer** (SCNT)

Hormonal synchronisation

Ovulation control by ultrasound \rightarrow Efficiency 100%

Blood sampling at D15 (at 8 am, before feeding)

Hormonal synchronisation

Ovulation control by ultrasound \rightarrow Efficiency 100%

Blood sampling at D15 (at 8 am, before feeding)

Monocytes selection Magnetic beads coated with anti CD14+ antibody

DNA extraction

Pan genomic DNA methylation analysis, construction of RRBS library

• Targeting of CCGG sites

- Selection of 40-290 base fragments
- Only a small part of genome (3%)
- Representative of CpG rich regions
- Transformation of epigenetic mark as SNP
- Limited amplification
- Sequenced using HiSeq4000 (Integragen, Evry, France

(Gu et al., 2011)

Trimming Trim Galore

- Suppression of bad quality nucleotides (phred 33)
- Suppression of short reads (<20 bp)

Read Alignment Bismark

Krueger F. et al., 2011

• ARS-UCD1.2 as bovine genome reference

3 Methylation extraction Bismark

- Selection of CpGs with appropriate sequencing depth (10 to 500 x)
- Counting of C/T polymorphisms

Overview of the bioinformatic pipeline, including quality controls

Perrier et al., 2018

Only sequences with high quality are selected

The alignement Is performed with Bismark software

5

Only the uniquely mapped reads are considered

Identification of DMCs *MethylKit*

Akalin et al., 2012

- qvalue<0.001
- Minimum of 25% methylation difference between two conditions
- DMCs can be aggregated into DMRs (home made script)

Annotation of DMCs and DMRs

Homemade script integrating

http://homer.salk.edu/homer/ngs/annotation.html

 Genes, CpG islands, and repeats associated with DMCs/DMRs

« Longhealth » RRBS libraries construction

Perrier et al, 2018

Adaptation from method previously described

Semi-automatized method / Size selection of fragments using magnetic beads

Sequencing HiSeq 4000 Service compagny , Integragen, Evry France

Overview of basic RRBS statistics (1)

• 39 millions of sequences/library

- 99.8% of concerved sequences after triming
- 88% of mapping efficiency
- 34% of unique mapping

- High number of sequences with a high quality index
- High mapping efficiency
- Low unique mapping due to surabondance of repeat sequences in bovine genome
- No difference between groups

Overview of basic RRBS statistics (2)

٠

• Mean coverage of 27.7

66 % of selected CpG

• 52.5 % of global methylation No significant difference

- Mean coverage of 27.7
- Average of 1.8 million of CpG₁₀₋₅₀₀ selected
- Good bisulfite conversion efficiency
- No difference of average of methylation on CpG₁₀₋₅₀₀ selected between groups

98.5% effeciency of

Descriptive analysis

Analysing 1.8 millions of CpG₁₀₋₅₀₀

• No clear separation between old and young groups in accordance with the global methylation %

Descriptive analysis

Analysing 1.8 millions of CpG₁₀₋₅₀₀

• No clear separation between old and young groups in accordance with the global methylation %

Differential analysis

Methylkit analysis 25% of methylation difference

- A limited number of DMCs
- Mainly hypomethylated in ONT group

324 DMCs exhibit a specific genomic distribution

• Reference: - 1.8 million of CpG₁₀₋₅₀₀

- More associated with intergenic regions (42.9% vs 17.4%) in detriment of genic regions
- Mainly hypomethylated in ONT group (94%)

no overlapping rep :	Type I Transposons/SINE
Low complexity sequences	LTRs
Type I Transposons/LINE	Satellite repeats
Tandem repeats	Type II Transposons

- More associated with repeat sequences (44.4% vs 19.3%)
- Mainly hypomethylated in ONT group (99%)
- Age effect is a global hypomethylation events are enriched for repetitive sequences and for intergenic regions
- · Thought to be responsible for the reactivation of retrotransposon elements and genome instability
- According to previous data published in human.

Rare DMCs are associated with gene features

• Reference: - 1.8 million of CpG₁₀₋₅₀₀

Intergenics	■ 5'Utr 🛛 TSS	
Intron	3' Utr TTS	i
Exon	🎸 Gene upstro	eam regions :
Promoter	🗧 Gene down	stream regions :

• More associated with intergenic regions (42.9% vs 17.4%) in detriment of genic regions

No difference

185 DMCs targeted 112 unique genes

in ONT group

- More associated with intronic regions and mainly hypomethylated
- DMCs associated with exonic regions and mainly hypermethylated

DMCs could be aggregated in DMRs Only 12 genes are targeted by a DMR

Chromosome	Methylation in ONT	Gene ID	Gene feature	Gene name	Gene description	CpG island
	5 Hypomethylated	ENSBTAG0000000507	exon	NR4A1	Bos taurus nuclear receptor subfamily 4 group A member 1 (NR4A1), mRNA.
	5 Hypomethylated	ENSBTAG0000008036	intron	CELSR1	cadherin EGF LAG seven-pass G-type receptor 1	shore
	6 Hypomethylated	ENSBTAG0000013980	exon	SOD3	superoxide dismutase 3	island
	12 Hypomethylated	ENSBTAG0000008656	promoter	KBTBD6	kelch repeat and BTB domain containing 6	island
	3 Hypermethylated	ENSBTAG00000014132	exon	SNED1	sushi, nidogen and EGF like domains 1	island
	7 Hypermethylated	ENSBTAG00000017349	intron	PCDHGA8	Bos taurus protocadherin gamma subfamily B, 4 (PCDHGB4), mRNA	. island
	10 Hypermethylated	ENSBTAG0000025329	exon	IRF2BPL	interferon regulatory factor 2 binding protein like	island
	12 Hypermethylated	ENSBTAG00000022991	intron	NBEA	neurobeachin	island
	12 Hypermethylated	ENSBTAG0000034069	promoter	MAB21L1	Bos taurus mab-21 like 1 (MAB21L1), mRNA.	island
	12 Hypermethylated	ENSBTAG00000012019	exon	IRS2	insulin receptor substrate 2	island
	13 Hypermethylated	ENSBTAG00000044047		SKIDA1	SKI/DACH domain containing 1	island
	16 Hypermethylated	ENSBTAG0000006515	intron	ESPN	espin	island
				Hete Repe Satell	rochromatin Euchromatin at sequences Genes tes sequences	
				LIN Endogeneou	ES & SINES Promoters, 5'UTR, 1st exon	Intragenic Regions
			_		╞╾╞╾┶╨┍╧╸╴╨╹╧╧╸	

Hypermethylation Silencing Genome protection

hypoacetylated histones Dense DNA methylation H3-K9 methylation H4-K20 methylation Hypomethylation Transcription

euchromatin

hyperacetylated histones

Low DNA methylation

H3-K4 methylation

H4-K16 acetylation

Hypermethylation Silencing Direct inhibition of FT binding Indirect – Methylbinding protein

> Hypermethylation Transcription Prevention of sporadic alternative splicing

IRF2BPL

encodes E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins

IRF2BPL

encodes E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins DMR

Using original model of cloned animals,

Aging affects

- a limited set of CpG positions
- associated with intergenic regions and repeat regions
- mainly hypomethylated

Reactivation of retrotransposon elements Induction the genome instability

Aging targets

- a limited set of genes
- DMRs associated with intronic region than exonic or regulatory regions

Function of some genes makes sense with diseases development Epigenetic drift \rightarrow de differentiation of cells

More investigations

- Correlation between alteration of methylation of DMRs and gene expression
- Other epigenetic marks associated with these DMRs (Histone modifications, Chip-seq PCR)

To continue to identify DMCs as biomarkers in various conditions

- in response to inflammatory challenge
- at different physiological stages
- after diet changes...
- in association with different traits (fertility, milk production...)

In female and in male

To develop new tools to rountinely analyze this individual variability of epigenome

- usefull to better determine the health status of animals
- used as new phenotypic parameters to improve the GWAS study

The team

- Hélène Kiefer
- Aurélie Chaulot-Talmon
- Charline Pontlevoy
- Anne Gabory
- Mélanie Jouin
- Luc Jouneau & Anne Aubert Bioinformatics and statistics

INRA experimental farm

- Christophe Richard
- Valérie Gélin

Collaboration

• Gilles Foucras

UMR1225 IHAP, Université de Toulouse, ENVT, INRA, 31076 Toulouse Cedex 3, France

Epigenetics integrates a part of environment

- \rightarrow Genome expression 1 \rightarrow \rightarrow Phenotype 1
- \rightarrow Genome expression 2 \rightarrow \rightarrow Phenotype 2
- \rightarrow Genome expression 3 \rightarrow \rightarrow Phenotype 3
- \rightarrow Genome expression 4 \rightarrow \rightarrow Phenotype 4
- \rightarrow Genome expression 5 \rightarrow \rightarrow Phenotype 5