

Genetic determinism of DNA global methylation rate in sheep

stephane.fabre@inra.fr

GenPhySE

Laurence Drouilhet, Florence Plisson-Petit, Didier Marcon, Frédéric Bouvier, Carole Moreno, Stéphane Fabre, Dominique Hazard

INRA, UMR1388 GenPhySE, Castanet Tolosan, France INRA, UE0332 Domaine de la Sapinière, Osmoy, France

entitionale veterinaire

• DNA or histone biochemical modifications influence adaptation and production traits in plants and animals.

• Whether these epigenetic variations are under a genetic determinism or not remains unknown.

- Chosen epigenetic mark: DNA methylation
- Phenotype: DNA global methylation rate (DGMR) in blood
- Studied species: sheep

Hypothesis : DGMR, genetically determined ?

The blood DGMR phenotype

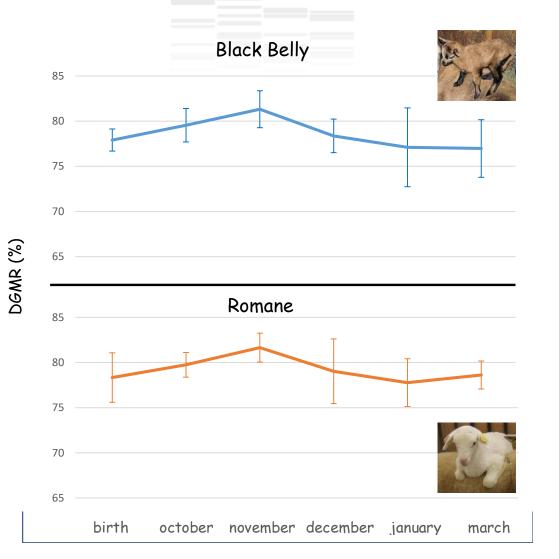
Measured by LUMA (Luminometric Methylation Analysis)

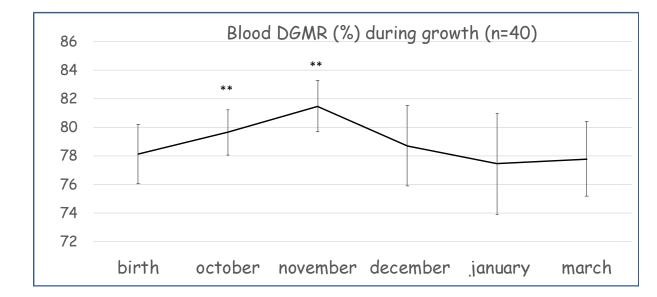
using a pyrosequencing approach (MspI/HpaII* and EcoRI digestion)

- T peak (EcoR1) G peak LUMA2 LUMA2 LUMA2 017 Hpa 7221 Hpa 7462 Hpa 6722_Hpa T peak mouton_Hpa 6662 Msp (EcoR1) G peak UMA2 11JMΔ2 (MspI) 7063 Msp 7271_Msp 7549 Msp
-
- variable between animals within a breed, between breeds?
- variable with time along animal growth?
- correlated with DGMR from other tissues?

Animals

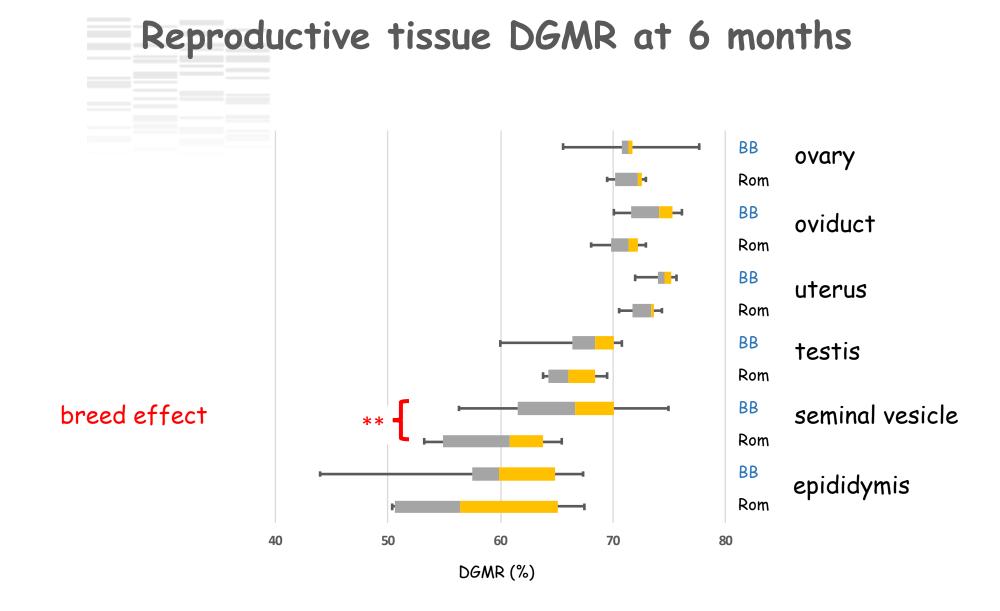
2 breeds





- 20 lambs (10 females, 10 males) per breed sharing a common environment
- Monthly blood sampling + complete blood count
- Slauther at 6 months of age, 17 tissues collected
- Statistical analysis
 - Mixed linear model (repeated measure over time)
 - Blood DGMR = μ + breed + sex + time + animal (random) + ϵ
 - General linear model
 - Tissue DGMR = μ + breed + sex + sex*tissue + ϵ

Blood DGMR during lamb growth


- > Only time effect is significant (P<.0001)
- > No impact of blood cells count

Non reproductive tissue DGMR at 6 months

Blood and other tissues DGMR are not or poorly correlated

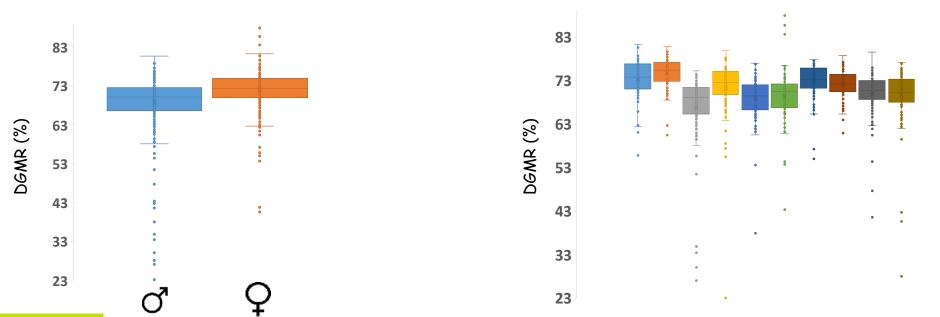
	uterus	frontal lobe	spleen	kidney medulla
Blood at slaughter	0.55	0.31	0.33	0.32
P value	0.042	0.095	0.078	0.081

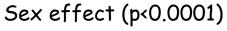
Blood DGMR seems not to be a good predictor of other tissue DGMR

Genetic determinism of DGMR in Romane sheep

- Available QTL design (10 families, ~100 individuals/family)
 - Growth and behavior phenotypes
 - ✓ 50k SNP genotypes
 - EDTA blood samples from lambs after weaning (~4 months)
 - > DGMR measurement

N	mean	SD	min	max
1047	70.71	5.97	23.08	87.94



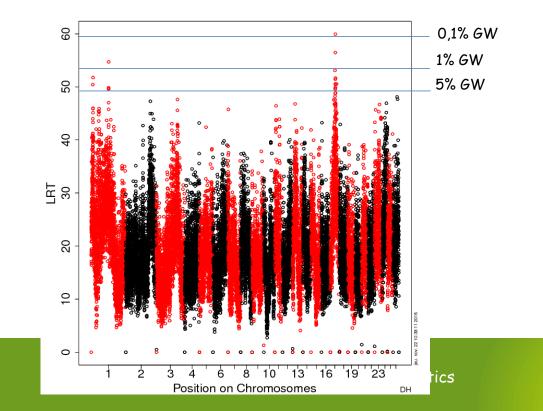


Variation factors

Birth and weaning weight, sex, litter size, suckling type, mother's age, ram (year)

Significant effect of sex and ram

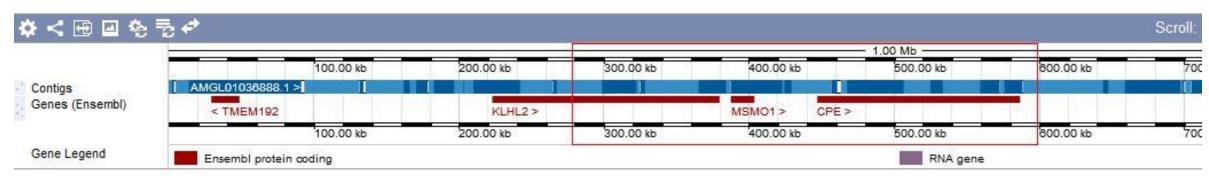
Ram effect (p<0.0001)


Genetic analyses

Genetic parameters

	Animal (h²)	Perm	Residual
DGMR	0.20 (±0.05)	0.02 (±0.03)	0.78 (±0.05)

Proportion of total phenotypic variance attributed to the direct additive genetic effect (Animal), the permanent environmental effect of the dam (Perm) and the residual effect (Residual)


- Linkage disequilibrium and association (50k SNP genotypes)
 - → significant signals on chr 1 and chr 17

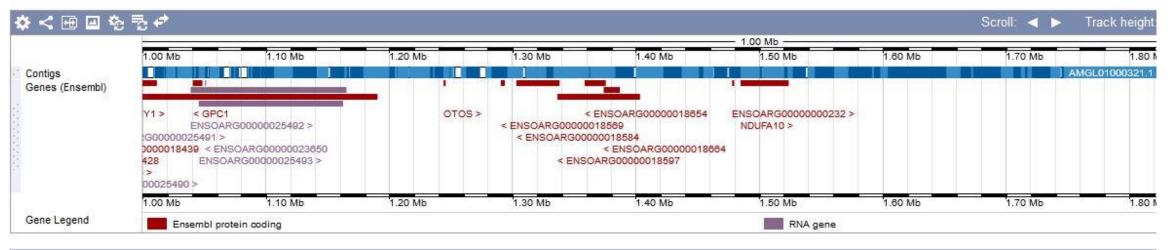
Region in detail 0

Chromosome 17 (Oar v3.1)

Annotated genes close to the significant genomic region:

TMEM192: transmembrane protein 192 (lysosomal membrane protein, autophagy)

KLHL2: kelch like family member 2 (reorganization of actin cytoskeleton)


MSMO1: methylsterol monooxygenase 1 (cholesterol biosynthesis)

CPE: carboxypeptidase E (neurotransmitters and hormones biosynthesis, notably Insulin)

Region in detail @

Chromosome 1 (Oar v3.1)

Annotated genes close to the significant genomic region:

NDUFA10: NADH:ubiquinone oxidoreductase subunit A10 (electron transport chain of mitochondria) – Hypermethylated in schizophrenia (brain) – A FOXM1-induced differentially methylated genes in cancer.

OTOS: otospiralin (inner ear functioning)

GPC1: glypican 1 (control of cell division and growth regulation, implicated in numerous cancers)

\rightarrow no obvious candidate gene(s)

> DGMR characterization

 Bisulfite sequencing (RRBS) on several tissues to confirm the DGMR values and better characterize the difference observed between tissues

Genetic determinism of DGMR

- Genetic correlations between DGMR and other recorded traits (growth, social behavior)
- ✓ Fine mapping of the QTL signals on Chr17 and Chr1 (whole genome sequencing of chosen animals based on significant haplotypes) → causal mutation(s)
- Establishing the link with adaptation traits as functional longevity, environmental change resistance/resilience and trade-off (European SMARTER project).

Thank you for your attention

<u>GenPhySE lab</u>, <u>Toulouse</u>

Laurence Drouilhet Florence Plisson-Petit Sophie Leroux Dominique Hazard Carole Moreno INRA Experimental facilities

UE Bourges UE La Fage CIRE platform, Nouzilly

Acknowledgments

GenEpiGen project granted by the INRA SelGen MetaProgram

