

Faculty of Agricultural and Nutritional Science Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

Selecting variables from sensor data using principal components and partial least squares

Imme Dittrich^{1*}, Marvin Gertz¹, Beate Maassen-Francke², Karl-Heinz Krudewig³, Wolfgang Junge¹ and Joachim Krieter¹

> 70th EAAP annual meeting in Ghent, Belgium August 26th to August 30th 2019

Session 25: Precision livestock farming for animal health and welfare Abstract number: 31108

¹Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, *idittrich@tierzucht.uni-kiel.de ²GEA Farm Technologies GmbH, Siemensstr. 25, 59199 Bönen, Germany ³365FarmNet Group GmbH & Co. KG, Hausvogteiplatz 10, 10117 Berlin, Germany

Introduction - Material & Methods - Results - Discussion - Conclusion Sickness behaviour

Anorexia, lethargy, slow-wave-sleep, decreased social behaviour, decreased reproductive behaviour, decreased exploratory behaviour Johnson, 2002

Introduction - Material & Methods - Results - Discussion - Conclusion Sickness behaviour

Resting, activity and feeding behaviour changes proceed in the same direction for the most common production diseases

Anorexia, lethargy, slow-wave-sleep, decreased social behaviour, decreased reproductive behaviour, decreased Johnson, 2002

Extent of changes is individual

Introduction - Material & Methods - Results - Discussion - Conclusion Sickness behaviour

Introduction - Material & Methods - Results - Discussion - Conclusion Automated sickness detection?

Selecting variables from sensor data by using principal component analysis and partial least squares model to identify sick dairy cows using multivariate CUSUM charts

Raw data

480 milking cows

Diagnoses (veterinarian, claw trimmer)

 \rightarrow Mastitis, claw issues/lameness, metabolic disorders

Selection criteria

>50 days with observations (9/2018 to 4/2019)No missing values (except for days of disease)

Final data set

298 cows with 44,852 observation days

n_{healthy}=154 n_{sick}=144

Introduction - Material & Methods - Results - Discussion - Conclusion Sensor information

Neck sensor

Introduction - Material & Methods - Results - Discussion - Conclusion Sensor information

Introduction - Material & Methods - Results - Discussion - Conclusion Sensor information

Multivariate cumulative sum control chart (MCUSUM)

Calculated according to Miekley et al. 2013 Individual level Threshold values tested: 1 to 15

Upper control line

Lower control line

10

20

30

Montgomery, 2009

5

-5

MCUSUM

Multivariate cumulative sum control chart (MCUSUM)

Calculated according to Miekley et al. 2013 Individual level Threshold values tested: 1 to 15

Quality of classification

Sensitivity, specificity, false-positive-rate (FPR) Block sensitivity

 \rightarrow Percentage of correctly detected diseases of all diseases

Introduction - Material & Methods - Results - Discussion - Conclusion
Variable selection

Principal component analysis

5 principal components

72% of total variance explained

Partial least squares

3 PLS-factors

2% of healthstatus' variance explained

Milking parlou

PC	Cumulative explained total variance (%)	_	PLS-factor	Cumulative explained variance (%)
1	29.7		1	1.2
2	45.3		2	1.9
3	60.6		3	2.0
4	67.2			
5	72.3			

Variables selected

Milkyield, conductivity, feeding, rumination

Variables selected

Conductivity, feeding, rumination

Introduction - Material & Methods - Results - Discussion - Conclusion
Variable selection

Principal component analysis

5 principal components

74% of total variance explained

Partial least squares

4 PLS-factors

1.5% of healthstatus' variance explained

Leg sensor

Milking parlou

PC	Cumulative explained total variance (%)	PLS-factor	Cumulative explained variance (%)
1	28.2	1	0.9
2	43.5	2	1.3
3	58.5	3	1.4
4	68.3	4	1.5
5	74.1		

Variables selected

Milkyield, conductivity, leg activity, walking, lying

Variables selected

Milk flow, conductivity, standing

Variable selection successful

Sickness behaviour

Behavioural variables stress principal components and PLS-factors

 \rightarrow Both attached sensors

Variable selection successful

Sickness behaviour

Behavioural variables stress principal components and PLS-factors

 \rightarrow Both attached sensors

MCUSUM - Potential for sickness detection at individual level Acceptable qualities of classification

Comparable to other studies (Miekley et al. 2013, Kramer et al. 2009)

Implementation of this algorithm

Practical conditions

 \rightarrow Average daily herd size 185 animals

 \rightarrow 24 to 44 false positive alarms a day

- Workload ↑

Principal components and PLS-factors

Acceptable sickness detection

Sensor type has only a slight effect

Impact of behavioural information > milk parameters

Implementation of algorithm

False-positive-Rates need still improvement Aimed at ≤ 10% Feasibility ↑

MCUSUM charts

Neck sensor

Thank you for your attention

With support from

Projekträger Bundesanstalt für Landwirtschaft und Ernährung

by decision of the German Bundestag

