

Piglets infected with ETEC F4 and F18: effect of *MUC4* and *FUT1* genotypes.

Massacci F.R., Tofani S., Tentellini M., Orsini S., Lovito C., Forte C., Luise D., Bevilacqua C.,

Marchi L., Bertocchi M., Rogel-Gaillard C., Pezzotti G., Estellé J., Trevisi P., Magistrali C.F.

francesca.massacci2@unibo.it

Weaning:

- ≥ 3rd and 4th week of age
- > Switch from highly digestible liquid milk to a less-digestible more-complex solid feed
- ➤ Move from maternity building to a post-weaning unit
- ➤ Social changes

Piglets during the weaning are susceptible to diarrhea:

✓ Dysbiosis

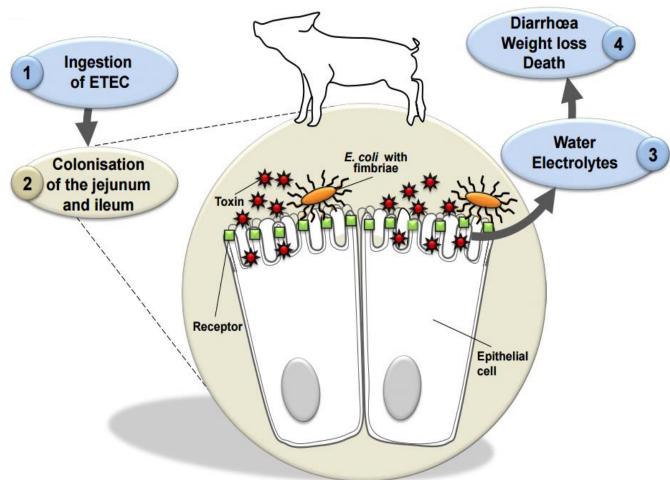
✓ Colonization by enteric pathogens

Lalles et al., 2007; Gresse et al., 2017

Causes of diarrhoea in post-weaning piglets:

- ✓ Clostridium perfringens (Type A, C)
- √ Salmonella
- ✓ Escherichia coli

Enterotoxigenic Escherichia coli (ETEC)



Post-Weaning Diarrhoea (PWD)

Pathotype	Adhesins	Toxins
ETEC	F4 (K88)	Sta, STb, LT, EAST-1, α-hemolysin
	F18	Sta, STb, LT, EAST-1, Stx2e, α-hemolysin

Luppi et al., 2017

Piglets are not equally susceptible to ETEC F4 infection

SNP located in intron 7 (g.13:8227C>G) of the Mucin 4 gene (MUC4)

MUC4^{G-} genotypes are considered susceptible phenotypes *MUC4*^{CC} genotype is considered resistant phenotype

Jørgensen et al., 2004, Patent number WO2004048606

Piglets are not equally susceptible to ETEC F18 infection

FUT1

SNP located in intron 1 (g.6:54079560T>C) of the Alpha-fucosyltransferase-1 (FUT1)

 $FUT1^{C-}$ genotypes are considered susceptible phenotypes $FUT1^{TT}$ genotype is considered resistant phenotype

ITALY

Reduction in the consumption of antimicrobials was observed in 2016, with a 30% drop in sales (mg/PCU) during the period 2010-2016

Sales of polymyxins fell by 62% in 2016 compared to sales in 2010

CIA (Critically Important Antimicrobials) list of WHO

PIG PRODUCTION

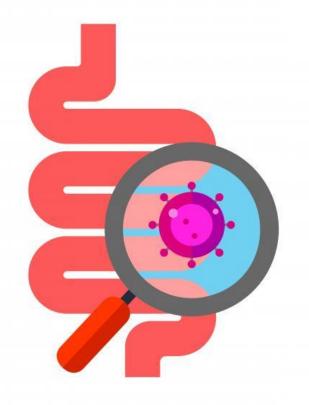
Antibiotics are mainly administered by the oral route

Concerns have been expressed for the use of oral formulations, since they exert a selective pressure on the gut microbiota

EMA, 2018

AMOXICILLIN

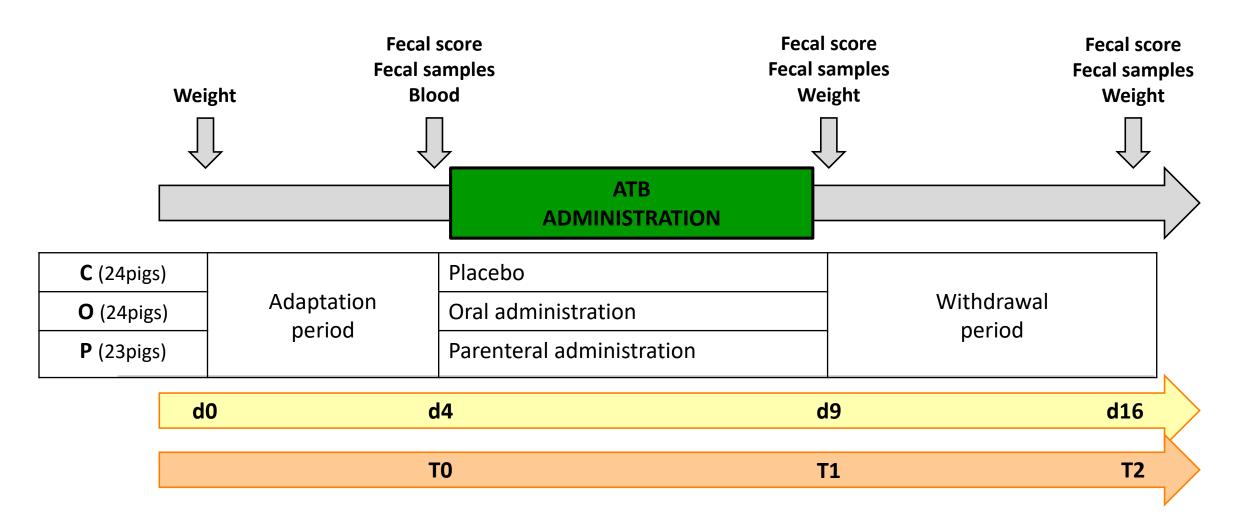
Amoxicillin is the most widely prescribed antibiotic at weaning


> Streptococcosis infection

GUT MICROBIOTA OF PIGLETS

- Weaning
- Host genotypes
- Administration of antibiotics

Mach et al.,2015; Konstantinov et al.,2006; Messori et al.,2013; Blaser et al.,2016; Schokker et al.,2014; Soler et al.,2018



AIM of the study

To understand the role of three main factors during a natural infection by ETEC F4 and ETEC F18:

- 1. Host genotypes: MUC4 and FUT1
- 2. Oral vs. parenteral route of amoxicillin administration
- 3. Gut microbiota composition

MATERIALS & METHODS

Balanced for sex, weight, litters of origin, *MUC4* and *FUT1* genotypes MORTALITY: 1 piglet removed from the study

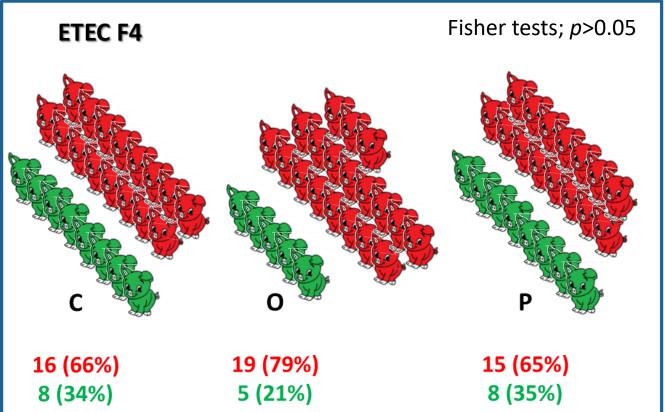
MATERIALS & METHODS

Fecal scores:

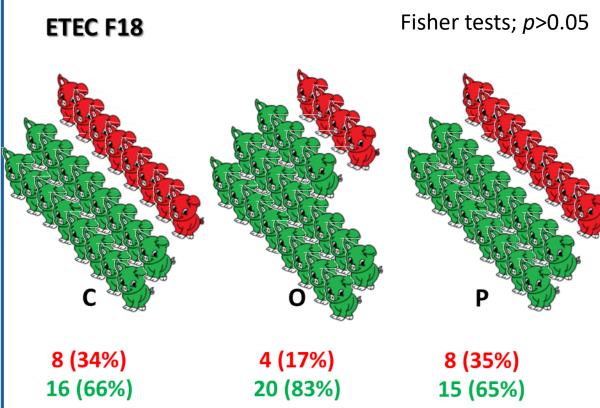
- 0= normal stools
- 1= loose stools
- 2= watery diarrhoea

Fecal samples:

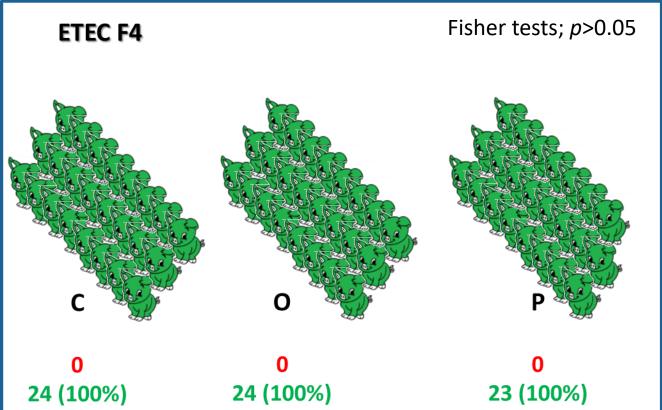
- Microbiological culture and antimicrobial susceptibility test
- PCR ETEC
- 16S rRNA gene (V3-V4 regions)


Blood:

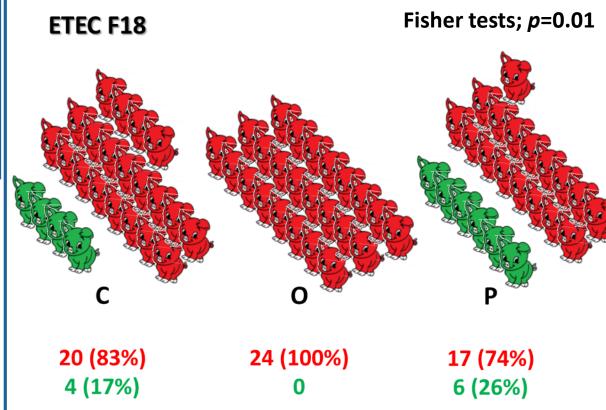
MUC4 and FUT1 genotyping


Bioinformatical and biostatistical analysis:

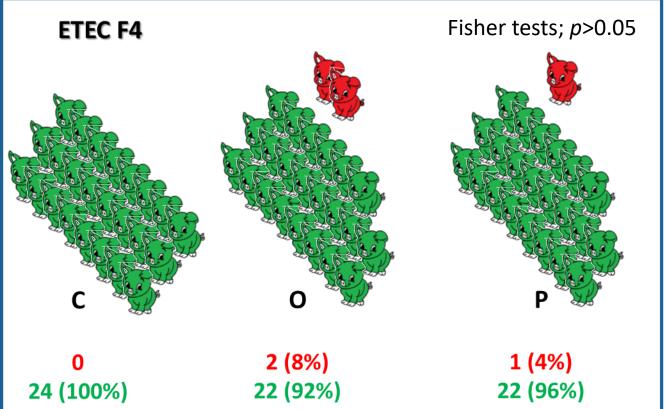
- QIIME
- R software



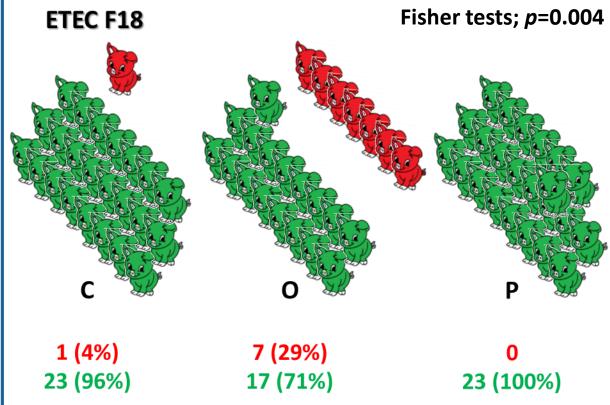
Course of natural infection



TO: end of adaptation period



Course of natural infection



T1: end of amoxicillin administration

Course of natural infection

T2: end of the withdrawal period

Antimicrobial susceptibility

The ETEC F4 and ETEC F18 isolates were classified as multi-resistant to antibiotics

Beta-lactams

Phenicols

Quinolones

Sulphonamides

Tetracycline

Streptomycin

Cephalosporins Gentamicin Kanamycin ETEC F4 and

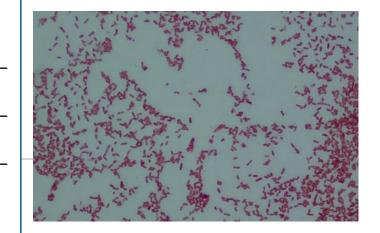
F18: Resistant

ETEC F4: Susceptible

ETEC F18: Resistant

ETEC F4 and

F18: Susceptible



Is there an association between host genotypes and the ETEC infection?

RESULTS

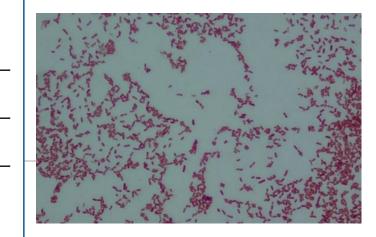
MUC4 vs. ETEC F4

TO				T1				T2			
	R	S	Tot		R	S	Tot		R	S	Tot
_	12	9	21	-	19	52	71	- -	17	51	68
+	7	43	50	+	0	0	0	+	2	1	3
Tot	19	52		Tot	19	52		Tot	19	52	
	1	•			•	•	•				

Fisher tests; *p*=0.003

Fisher tests; *p*>0.05

Fisher tests; *p*>0.05


Is there an association between host genotypes and the ETEC infection?

RESULTS

FUT1 vs. ETEC F18

T0				T1				T2			
	R	S	Tot		R	S	Tot		R	S	Tot
_	12	38	50	-	5	5	10	- -	13	50	63
+	1	20	71	+	8	53	61	+	0	8	8
Tot	13	58		Tot	13	58		Tot	13	58	
Tot	13	58		Tot	13	58		Tot	13	58	

Fisher tests; *p*=0.001

Fisher tests; *p*>0.05

Fisher tests; *p*>0.05

Is there an association between host genotypes and diarrhoea?

TO

RESULTS

MUC4 vs. diarrhoea

	R	S	Tot
-	10	44	54
+	9	8	17
Tot	19	52	
		•	•

 R
 S
 Tot

 12
 34
 46

 +
 7
 18
 25

 Tot
 19
 52

 R
 S
 Tot

 16
 45
 61

 +
 3
 7
 10

 Tot
 19
 52

Fisher tests; p=0.01

Fisher tests; *p*>0.05

Fisher tests; *p*>0.05

T2

FUT1 vs. diarrhoea Fisher tests; *p*>0.05

Is there an association between the amoxicillin administration and the ETEC infection?

Amoxicillin vs. ETEC F4

T1

	С	0	P	Tot
-	24	24	23	71
+	0	0	0	0
Tot	24	24	23	

Fisher tests; *p*>0.05

T2

	С	0	P	Tot
-	24	22	22	68
+	0	2	1	3
Tot	24	24	23	

Fisher tests; *p*>0.05

Is there an association between the amoxicillin administration and the ETEC infection?

Amoxicillin vs. ETEC F18

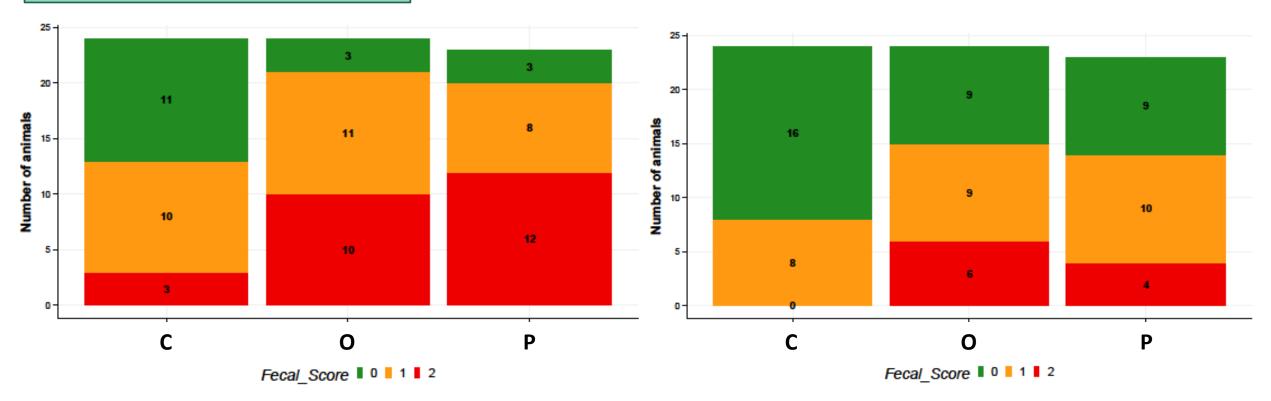
T1

	С	0	P	Tot
-	4	0	6	10
+	20	24	17	61
Tot	24	24	23	

Fisher tests; p=0.017

T2

	С	0	P	Tot
-	23	17	23	63
+	1	7	0	8
Tot	24	24	23	

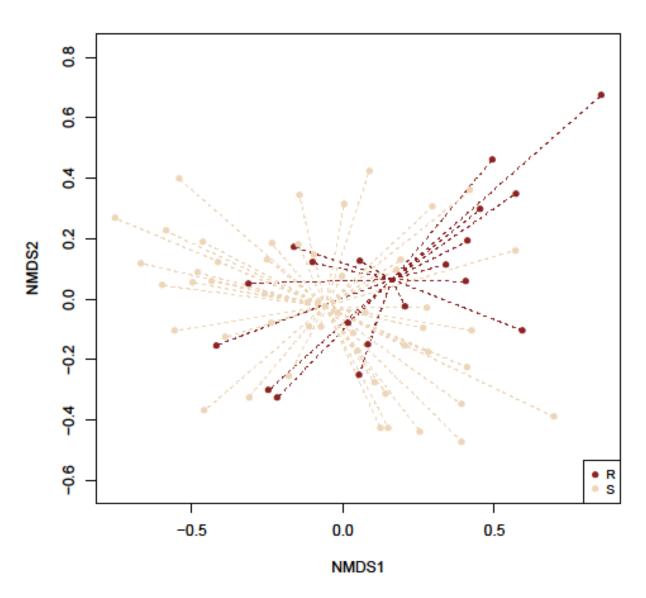

Fisher tests; p=0.004

Is there an association between the amoxicillin administration and diarrhea?

Amoxicillin vs. diarrhea

T1 (Fisher test; p=0.009)

T2 (Fisher test; p=0.02)

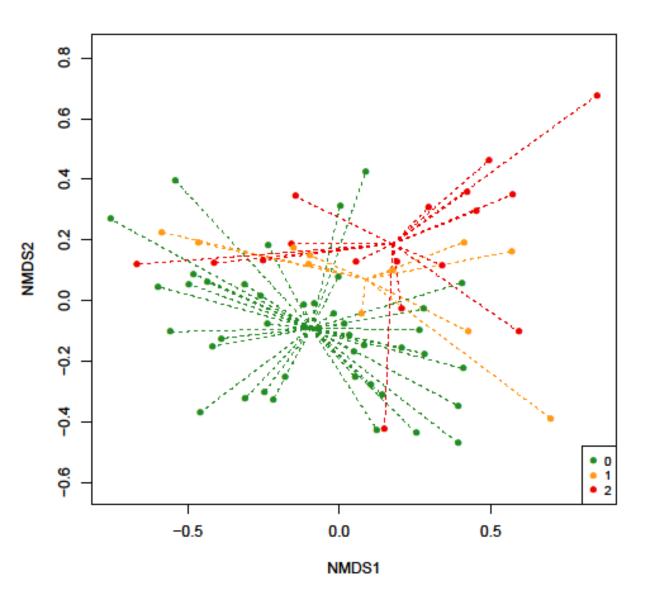

Gut microbiota

MUC4 (Adonis test, p = 0.004)

68 DA OTUs

Oscillospira genera and the Actinobacillus porcinus more abundant in the resistant MUC4 genotype

Envfit test, *p*=0.018

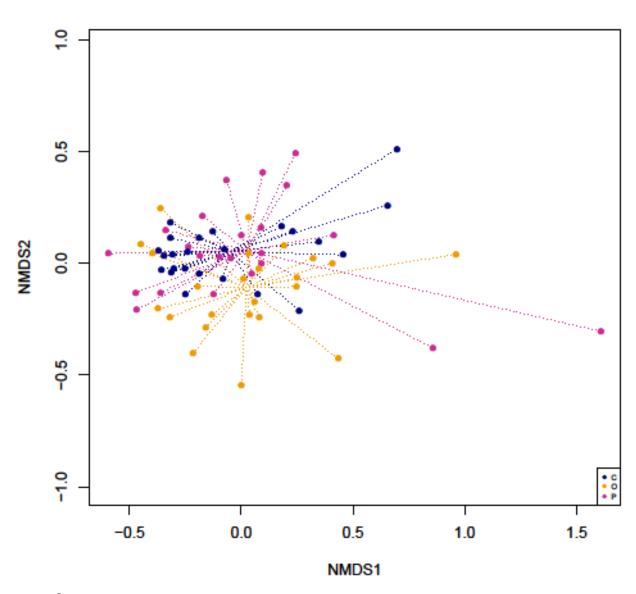

Gut microbiota

Fecal score (Adonis test, p = 0.001)

153 DA OTUs

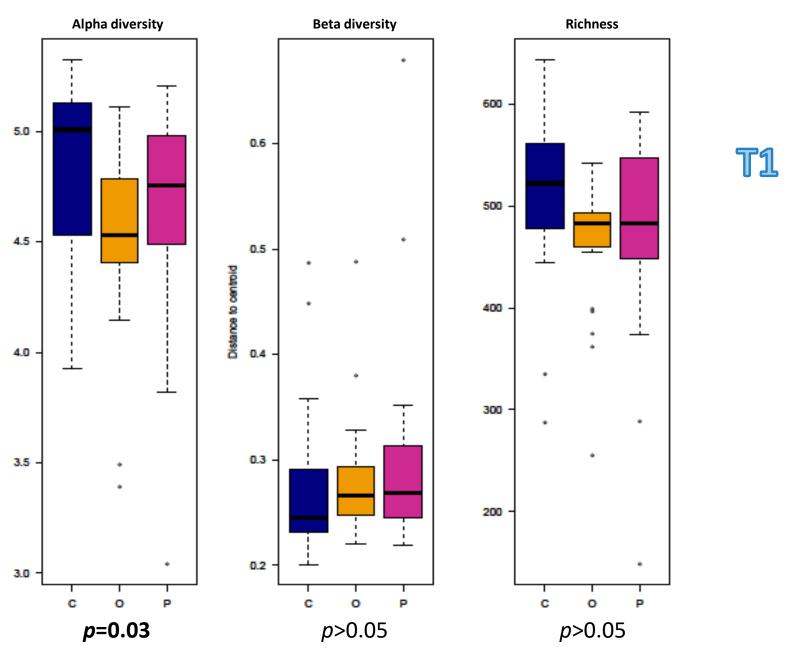
Ruminococcaceae and Christensenellaceae families more abundant in non-diarrhoeic animals

Envfit test, *p*=0.0004



Gut microbiota

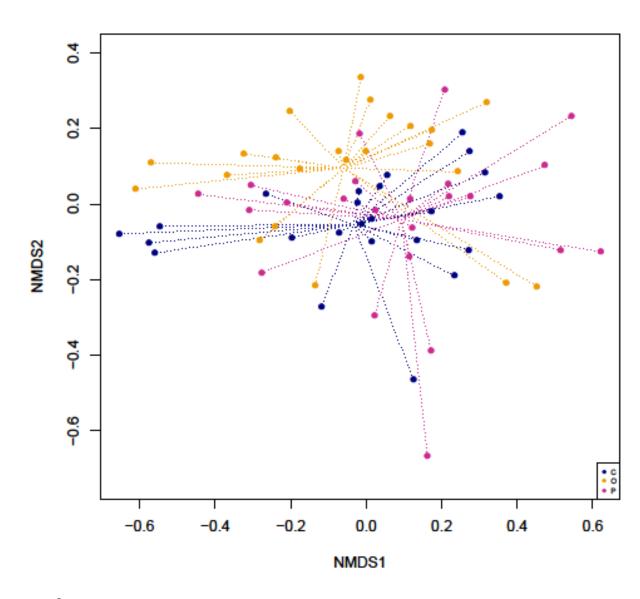
T1


Amoxicillin administration (Adonis test, p = 0.0009)

187 DA OTUs

Envfit test, *p*=0.02

Gut microbiota



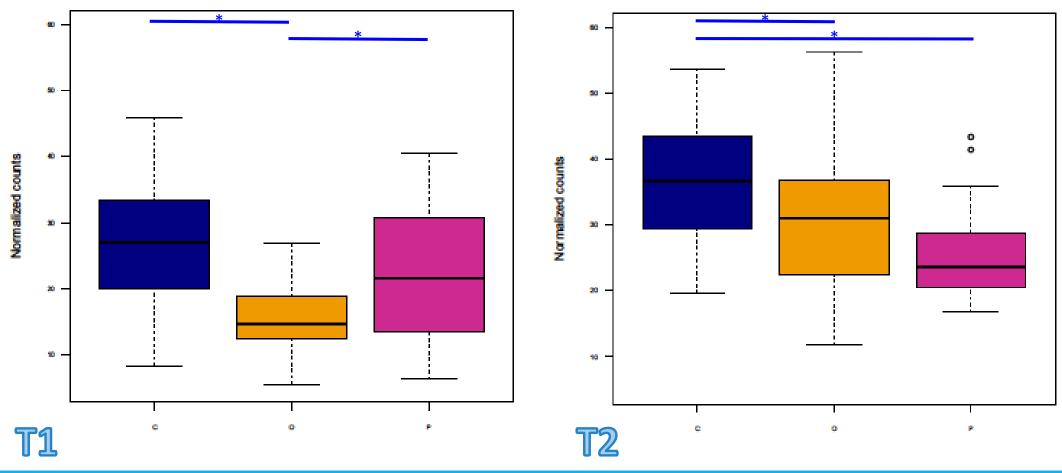
Gut microbiota

T2

Amoxicillin administration (Adonis test, p = 0.0001)

124 DA OTUs

Envfit test, *p*=0.03


Gut microbiota

T2

The case of the Lactobacillus genus

Gut microbiota

Common situation occurring in commercial pig herds during the weaning period

✓ animals are naturally infected by ETEC strains and simultaneously treated
with antibiotics

LIMIT OF THE STUDY:

Infectious load was not homogeneous in the animals

Susceptible *MUC4* genotypes associated with ETEC F4
Susceptible *FUT1* genotypes associated with ETEC F18

Confirming precedent studies and the role of these genes in the host susceptibility to the infection

Intestinal microbiota is mainly influenced by the MUC4 genotypes

Casini et al., 2016; Jørgensen et al., 2004; Luise et al., 2019; Meijerink et al., 1997; Poulsen et al., 2018; Zhang et al., 2017

Different composition of the faecal microbiota in diarrheic animals compared to nondiarrheic animals

confirming the role of dysbiosis in the development of diarrhoea

Bacteroides, Parabacteroides, Fusobacterium genera and Pasteurellaceae family Ruminococcaceae and Christensenellaceae families

Luise et al., 2019; Messori et al., 2012; Bian et al., 2016; Massacci et al., Submitted; Soler et al., 2018

Pigs administered with amoxicillin were at higher risk for diarrhoea and ETEC F18 when compared to non-treated piglets

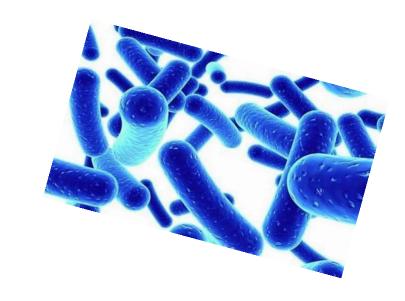
Pigs administered with amoxicillin showed a disrupted gut microbiota when compared to non-treated piglets



The case of the Lactobacillus genus

In the group that received amoxicillin orally, we described a decreased abundance of the commensal *Lactobacillus*

Clinical activity of amoxicillin

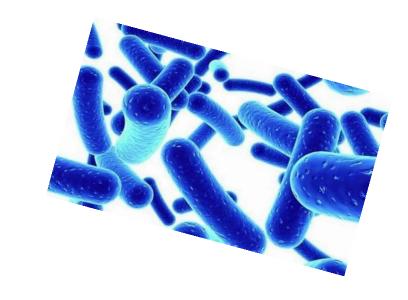


The case of the Lactobacillus genus

In the group that received amoxicillin orally, we described a decreased abundance of the commensal *Lactobacillus*

Clinical activity of amoxicillin

Decrease at weaning increases the risk of enteritis:


Bacteria belonging to this genus play a major role in disease prevention

The case of the Lactobacillus genus

In the group that received amoxicillin orally, we described a decreased abundance of the commensal *Lactobacillus*

Clinical activity of amoxicillin

Decrease at weaning increases the risk of enteritis:

Bacteria belonging to this genus play a major role in disease prevention

Lower effect of parenteral than oral administration

CONCLUSION

MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections

ETEC F4 and ETEC F18 multi-drug resistant

Amoxicillin treatment affect the gut microbiota

Casini et al., 2016; Jørgensen et al., 2004; Luise et al., 2019; Meijerink et al., 1997; Poulsen et al., 2018; Zhang et al., 2017 Burch & Sperling, 2018; Konstantinov et al., 2006; Connelly et al., 2018

CONCLUSION

Amoxicillin treatment may produce adverse outcomes on pig health in course of multi-resistant ETEC infection

• stronger effect when the antibiotic is orally administered than parenterally

Amoxicillin may help the ETEC colonization

• Antibiotics therapy causes alterations of the intestinal microbial composition, enabling *C. difficile* or *Salmonella* colonization

Mullish *et al.*, 2018; Crowther *et a*l., 2015; Divek *et al.*, 2018

CONCLUSION

Alternative control measures should be included in farm management practices to preserve a balanced and stable gut microbiota in weaners

New antibiotics

Vaccination

Eubiosis

Probiotics

Journal of Animal Breeding and Genetics

Accepted 05 Aug. 2019

"Host genotype and amoxicillin administration affect the incidence of diarrhoea and faecal microbiota of weaned piglets during a natural multi-resistant ETEC infection."

Massacci F.R.^{1,2,3*}, Tofani S.¹, Forte C.¹, Bertocchi M.², Lovito C.¹, Orsini S.¹, Tentellini M.¹, Marchi L.¹, Lemonnier G.³, Luise D.², Blanc F.³, Castinel A.⁴, Bevilacqua C.³, Rogel-Gaillard C.³, Pezzotti G.¹, Estellé J.³, Trevisi P.², Magistrali C.F.¹

¹ Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.

²Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.

³GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.

⁴GeT-PlaGe, Genotoul, INRA US1426, 31320, Castanet-Tolosan Cedex, France.

Chiara Francesca Magistrali Giovanni Pezzotti

Silvia Tofani Claudio Forte Carmela Lovito Serenella Orsini Michele Tentellini

Prof. Paolo Trevisi Micol Bertocchi Vincenzo Motta Diana Luise

Jordi Estellé
Claire Rogel-Gaillard
Gaetan Lemonnier
Fany Blanc

70th Annual Meeting of the European Federation of Animal Science City of Ghent (Belgium)
26 - 30 Aug 2019

Piglets infected with ETEC F4 and F18: effect of *MUC4* and *FUT1* genotypes.

Massacci F.R., Tofani S., Tentellini M., Orsini S., Lovito C., Forte C., Luise D., Bevilacqua C.,

Marchi L., Bertocchi M., Rogel-Gaillard C., Pezzotti G., Estellé J., Trevisi P., Magistrali C.F.

francesca.massacci2@unibo.it