The association of the Host Genome with Microbiome Composition and Growth Traits in Pigs

C. Maltecca*, M. Bergamaschi, D. Lu, C. Schillebeeckx, N.P. McNulty, C. Schwab, C. Shull and F. Tiezzi

NC STATE
 UNIVERSITY

Introduction

Introduction

- The microbial community plays an important role inside each living body and profoundly influences health and disease
- The microorganisms residing in the gut live in intimal contact with each other and establish many mutualist or symbiotic relationships with the host
- These communities are influenced by many factors such as environment, age, sex, and diet

Introduction

Efficiency of producing meat determined:

- Feed Costs
- Quality of lean meat produced

Using feed resources more efficiently:

- Through diet
- Exploiting genomic variability for feed efficiency

Concentrating only on the pig variability

- Diminished marginal gains
- Losses of overall fitness

Introduction

The intestinal microbiome:

- Affects degradation of carbohydrates
- Provides short chain fatty acid
- Produces essential vitamins

Different composition of gut microbiome:

- Alters ability of degrading enzymes
- Maintains population balance
- Influences overall health status
- Controls fatness and growth

Objectives

Objective

- Microbial diversity in pigs has been described to some extent.
- Composition and function of a healthy microbial population not yet employed as a tool to maximize animal health and performance
- Characterizing temporal changes in the microbiome community of pig feces with respect to both composition and diversity

- Investigating the potential influence of host genetics on this diversity.

Objective $_{(s)}$

- Association between microbiome extracted from fecal samples with host growth and fatness parameters
- Heritability estimates for taxa significantly linked to growth and fatness
- Genome-wide association between taxa significantly associated with growth parameters and pigs single nucleotide polymorphisms

Materials and Methods

Experimental Design

Analysis Design

-Amplification of V4 region sequences merged into a single sequence - OTU table rarefied to 10,000 counts

Microbiome Phenotype Association

$\boldsymbol{P h e n}=\boldsymbol{X} b+\gamma O T U+\boldsymbol{W} p+\boldsymbol{e}$

- Sex
- Sire
- Breed
- Contemporary group
- Pen

Phenotype	Mean	SD
$\mathrm{ADG}_{\text {B14 }}, \mathrm{kg} / \mathrm{d}$	0.57	0.08
$\mathrm{ADG}_{\text {W14 }}, \mathrm{kg} / \mathrm{d}$	0.64	0.10
$\mathrm{ADG}_{1422}, \mathrm{~kg} / \mathrm{d}$	0.87	0.16
$\mathrm{ADG}_{14 \mathrm{Mk},} \mathrm{kg} / \mathrm{d}$	0.89	0.14
$\mathrm{BF}_{14}, \mathrm{~mm}$	12.5	2.81
$\mathrm{BF}_{22}, \mathrm{~mm}$	20.1	5.36
$\mathrm{LD}_{14}, \mathrm{~mm}$	42.3	4.80
$\mathrm{LD}_{22}, \mathrm{~mm}$	55.8	5.15

Taxa h² estimates

$\boldsymbol{O T} \boldsymbol{U}=\boldsymbol{X} b+\mathbb{Z} s+\boldsymbol{W} p+\boldsymbol{e}$

- Sex
- Breed
- Contemporary group
- Sire

- Pen

Taxa GWAS

$\boldsymbol{O T U}=\boldsymbol{X} b+K m+\boldsymbol{Z} s+\boldsymbol{W} p+\boldsymbol{e}$

Results

Taxa Composition

NC STATE UNIVERSITY

Taxa Composition

M-WAS
Weaning

NC STATE UNIVERSITY

M-WAS
MidTest

NC STATE
 UNIVERSITY

M-WAS
OffTest

NC STATE
UNIVERSITY

h^{2} Estimates

Weaning

betaproteobacteria-

h^{2} Estimates MidTest

MidTest

h^{2} Estimates

 OffestOffTest
deltaproteobacteria

Family
bacteroidaceae
clostridiaceae
coriobacteriaceae
corynebacteriaceae
desulfovibrionaceae
eubacteriaceae
fusobacteriaceae
lachnospiraceae
lactobacillaceae
porphyromonadaceae
prevotellaceae
ruminococcaceae
spirochaetaceae
streptococcaceae
unassigned
unclassified_clostridiales
veillonellaceae

Phylum	Class	Order	Family	Genus	Species	MidTest	OffTest
actinobacteria	actinobacteria_1760	actinomycetales	unassigned	unassigned	unassigned	0.0205	0.0205
bacteroidetes	bacteroidia	bacteroidales	porphyromonadaceae	unassigned	unassigned	0.0262	0.0333
bacteroidetes	bacteroidia	bacteroidales	porphyromonadaceae	unassigned	unassigned	0.0280	0.0339
bacteroidetes	bacteroidia	bacteroidales	prevotellaceae	prevotella	unassigned	0.0395	0.0316
bacteroidetes	bacteroidia	bacteroidales	prevotellaceae	prevotella	copri	0.0271	0.0299
bacteroidetes	bacteroidia	bacteroidales	prevotellaceae	prevotella	copri	0.0261	0.0211
bacteroidetes	unassigned	unassigned	unassigned	unassigned	unassigned	0.0290	0.0228
bacteroidetes	unassigned	unassigned	unassigned	unassigned	unassigned	0.0265	0.0312
bacteroidetes	unassigned	unassigned	unassigned	unassigned	unassigned	0.0366	0.0421
firmicutes	bacilli	lactobacillales	lactobacillaceae	lactobacillus	reuteri	0.0205	0.0221
firmicutes	bacilli	lactobacillales	lactobacillaceae	lactobacillus	reuteri	0.0282	0.0238
firmicutes	bacilli	lactobacillales	streptococcaceae	streptococcus	gallolyticus	0.0331	0.0599
firmicutes	clostridia	clostridiales	clostridiaceae	clostridium	sp_shc10	0.0232	0.0433
firmicutes	clostridia	clostridiales	clostridiaceae	clostridium	butyricum	0.0433	0.1142
firmicutes	clostridia	clostridiales	lachnospiraceae	blautia	obeum	0.0362	0.0269
firmicutes	clostridia	clostridiales	ruminococcaceae	subdoligranulum	variabile	0.0231	0.0345
firmicutes	clostridia	clostridiales	ruminococcaceae	ruminococcus	sp_ce2	0.0212	0.0553
firmicutes	clostridia	clostridiales	unassigned	unassigned	unassigned	0.0245	0.0554
firmicutes	clostridia	clostridiales	unassigned	unassigned	unassigned	0.0297	0.0340
firmicutes	clostridia	clostridiales	unassigned	unassigned	unassigned	0.0281	0.0211
firmicutes	clostridia	clostridiales	unassigned	unassigned	unassigned	0.0397	0.0417
firmicutes	clostridia	clostridiales	unassigned	unassigned	unassigned	0.0201	0.0226
firmicutes	clostridia	clostridiales	unassigned	unassigned	unassigned	0.0267	0.0444
firmicutes	negativicutes	selenomonadales	veillonellaceae	unassigned	unassigned	0.0306	0.0207
unassigned	unassigned	unassigned	unassigned	unassigned	unassigned	0.0233	0.0343

NC STATE
 UNIVERSITY

GWAS

Weaning

Chromosome

GWAS
Weaning

GWAS

MidTest

GWAS

OffTest

$$
\frac{M 39828}{M _39829}
$$

M-39830
10.0-

607877

M_38457

49605

GWAS α Diversity

 Weaning

GWAS α Diversity

Alpha diversity MidTest MidTest

GWAS α Diversity

OffTest

NC STATE
UNIVERSITY

Summary

MWAS

- 5 taxa at weaning significantly associated with ADG
- 48 taxa from MidTest significantly associated with $\mathrm{BF}_{14}, \mathrm{BF}_{22}, \mathrm{LD}_{14}$, and LD_{22};
- 19 taxa from OffTest were significantly associated with BF_{22} and ADG.
- Taxa with higher effect on ADG and carcass traits included
- Peptococcus niger, Rothia nasimurium, Coprococcus comes, Finegoldia magna, Faecalibacterium prausnitzii.
h^{2}
- Heritability estimates for the significant taxa at weaning, MidTest, and OffTest were from 0.021 to 0.057 , 0.020 to 0.072 , and 0.020 to 0.136 , respectively.

GWAS

- There were 15, 21, and 29 SNPs significantly associated with 9, 10, 18 taxa within Weaning, MidTest, and OffTest, respectively.

Acknowledgements

NC STATE UNIVERSITY

