To what extent rumen microbiota composition is host-driven?

An experimental approach in goats

<u>Berthelot V.</u>¹, Gomes P.^{1, 2}, Mosoni P.³, Broudiscou L.¹

¹ UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, France
² NEOVIA, France
³ Université Clermont Auvergne, INRA, UMR 0454 MEDIS, France

2

Understanding of the symbiotic association between the host animal and its rumen microbiota is essential

Each adult animal harbors its own microbiota => suggest a significant impact of the host on its microbiota composition

 High specificity and resilience of the rumen microbiota within its host in lactating cows (Weimer et al., 2010, 2017)

- Understanding of the symbiotic association between the host animal and its rumen microbiota is essential
- Each adult animal harbors its own microbiota => suggest a significant impact of the host on its microbiota composition
- High specificity and resilience of the rumen microbiota within its host in lactating cows (Weimer et al., 2010, 2017)

Aim of the trial

- 4
- Test the existence of a sustained host specificity in the rumen microbiota composition
- => original experimental approach :
 - emptied rumens of adult goats, pooled all the rumen contents and refilled each goat with the pooled rumen microbiota
 - fracked the microbiota compositional changes and compare the individual microbial equilibriums reached

Goat 1 microbiota Goat 2 microbiota

Goat n-1 microbiota Goat n microbiota

Trial: Animals

- 12 dry dairy goats (3 Saanen, 9 Alpine)
- Raised in similar conditions from birth
- Rumen cannulated
- During 7.5 months
 - 3 periods in individual pen

Trial: Diets

- 2 diets rich in fiber, of similar nutritional composition
- Quantities given adjusted to each goat's BW

• Taxonomic affiliation of the 1 488 OTUs detected on the database SILVA 16S v128

10

Individual rumen bacterial and archeal composition at family level before rumen content pooling

Diversity at species level

- Alpha-diversity
- Beta-diversity (Compositional, Phylogenetic)
- Modification of rumen microbiota composition at genus level relative to
 - Days

Individual rumen bacterial and archaeal relative abundances at family level at d-53

α -diversity (OTUs level)

At d3, increased α-diversity which stabilized at a higher level at d 35, d114 and d141

• Decreased variability of α -diversity indexes at d3 compared to d-53

Compositional *β*-diversity (OTUs level)

Principal **Co**ordinates Analysis (PCoA) of rumen microbiota samples based on OTUs community dissimilarities (Bray Curtis)

Compositional *β*-diversity (OTUs level)

Analysis of similarity testing ranked bray-Curtis dissimilarity indices between days

	d-53	d3	d35	d114	d141
d-53		R=0.61 (P=0.001)	R=0.78 (P=0.001)	R=0.90 (P=0.001)	R=0.89 (P=0.001)
d3			R=0.94 (P=0.001)	R=0.97 (P=0.001)	R=0.99 (P=0.001)
d35				R=0.95 (P=0.001)	R=0.95 (P=0.001)
d114					R=0.04 (P=1)

Phylogenetic *β*-diversity at OTUs level

PCoA of rumen microbiota samples based on weighed unifrac distance

PCoA of rumen microbiota samples based on Bray Curtis distance at genus level

Biplot of RDA of rumen microbiota composition relative to days (genus level)

Microbiota composition at genus level according to days

others(112 genus, below 5000 reads)

- Methanobacteriaceae_Methanobrevibacter
- Planctomycetaceae_p-1088-a5 gut group
- Mollicutes RF9_unknown family
- Spirochaetaceae_Treponema 2
- Fibrobacteraceae_Fibrobacter
- Erysipelotrichaceae_Erysipelotrichaceae UCG-004
- Acidaminococcaceae_Succiniclasticum
- Lachnospiraceae_Lachnospiraceae NK3A20 group
- Lachnospiraceae_unknown genus
- Lachnospiraceae_Butyrivibrio 2
- Lachnospiraceae_Lachnospiraceae AC2044 group
- Lachnospiraceae_Lachnospiraceae XPB1014 group Ruminococcaceae_Ruminococcaceae UCG-010
- Ruminococcaceae_unknown genus
- Ruminococcaceae_Ruminococcus 2
- Ruminococcaceae_Papillibacter
- Ruminococcaceae_Ruminococcaceae UCG-005
- Ruminococcaceae_[Eubacterium] coprostanoligenes group
- Ruminococcaceae_Ruminococcus 1
- Ruminococcaceae_Ruminococcaceae UCG-014
- Ruminococcaceae_Saccharofermentans
- Ruminococcaceae_Ruminococcaceae NK4A214 group
- Christensenellaceae_Christensenellaceae R-7 group

- Christensenellaceae_Christensenellaceae R-7 group
- Bacteroidetes BD2-2_unknown family
- PeH15_unknown genus
- Bacteroidales UCG-001_unknown genus
- Bacteroidales S24-7 group_unknown genus
- Bacteroidales RF16 group_unknown genus
- Bacteroidales BS11 gut group_unknown genus
- Rikenellaceae_Multi-affiliation
- Rikenellaceae_Rikenellaceae RC9 gut group
- Prevotellaceae_Prevotellaceae UCG-004
- Prevotellaceae_Prevotellaceae NK3B31 group
- Prevotellaceae_Prevotellaceae UCG-003
- Prevotellaceae_Prevotellaceae UCG-001
- Prevotellaceae_Prevotella 1
 - Not significantly different between days

Biplot of RDA of rumen microbiota composition relative to goats (genus level)

Increased α-diversity after reinoculation which stabilized at a higher level than before reinoculation

• β -diversity:

Clear clustering pattern based on days with no return to original state

- Goats impacted microbial composition to a much lower extent
- Contrary to Weimer et al., no resilience was observed. Instead all rumen microbiota exhibited a high structural plasticity.

Functional redundancy?

- 21
- From the reinoculation step to 5 months later, the 12 ecosystems evolved following a common pattern in which hosts played a minor role
- In stabilized rumens, can host-dependent variables explain the structural microbiota differences?

Take home message

In dry goats fed high fiber diets, rumen microbiota composition was more environnementally and diet-driven than host-driven

Thank you for your attention

