Contribution of animal breeding to reduce environmental impact of animal products

Erwin Mollenhorst & Yvette de Haas

https://library.wur.nl/WebQuery/wurpubs/549934

The contribution of breeding to reducing environmental impact of animal production

H. Mollenhorst and Y. de Haas

REPORT 115

Urgent need to reduce GHG of livestock

Dutch Climate Act

- 49% reduction in 2030
- 95% reduction in 2050

Market push

 Retail and food processers demand lower carbon footprint

100 years

GHG EMISSIONS FROM GLOBAL LIVESTOCK SUPPLY CHAINS, BY PRODUCTION ACTIVITIES AND PRODUCTS Source: FAO; Gerber et al, 2013

GHG emissions of different species

Source: FeedPrint 2015.03 (Vellinga et al., 2013; WLR, 2015)

5

What role can animal breeding play?

Breeding programmes of livestock species

7

Impact of current breeding goal on GHG

Broilers, layers, and pigs

- Life cycle assessment
- GHG emissions

Dairy

- Correlated responses of selection index
- Enteric methane emissions

Broilers – GHG results genetic progress

Genetic progress -23 g CO₂-eq per kg^a per yr -1.7 % per yr

Predicted performance (2030) -270 g CO₂-eq per kg body weight^a (20.1%) compared to current

^a Final body weight after 1 day fasting

Layers – GHG results genetic progress

Brown

-16 g CO₂-eq per kg^a per yr

-0.8 % per yr

White

- -19 g CO₂-eq per kg^a per yr
- -1.0 % per yr

^a Product is egg including shell

Pigs – GHG results genetic progress

Corn / soy diet \bigcirc 3% higher than \bigcirc -12 g CO₂-eq per kg^a per yr -0.6 % per yr

Cereals / alternative diet

 \bigcirc 5% higher than \bigcirc

-12 g CO_2 -eq per kg^a per yr

-0.7 % per yr

Methane production and intensity per cow

Conclusions

Environmental impact of animal production decreases with 0.5-1.5% per year due to genetic progress on current breeding goals

- Animal breeding can contribute to a lower footprint
 - Account for individual variation in environmental impact traits

- Greater impact with specific focus on environmental impact traits
 - Needs recording schemes for these traits

Thank you!

IMPORTANT DATES

12 January 2022: Deadline abstract submission 1 March 2022: Deadline early bird registration

QUALITY, INCLUSIVE, ATTRACTIVE AND MODERN. WITH A DUTCH TOUCH.

www.wcgalp2022.com

The contribution of breeding to reducing environmental impact of animal production

H. Mollenhorst and Y. de Haas

