

70th Annual meeting of the European Federation Of Animal Science Ghent, Belgium 27 August 2019

An optimised test for recording hygienic behaviour in the honeybee

Elena Facchini

HYGIENIC BEHAVIOUR - HB

Immune mechanism of resistance to a number of important brood pathogens

BACTERIAL → AMERICAN FOULBROOD

→ EUROPEAN FOULBROOD

FUNGAL → CHALKBROOD

PARASITES → WAX MOTH

→ VARROA

How to measure HB? Dead removal in 24 h

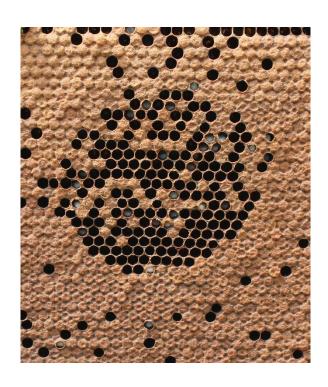
Mechanical killing - Pin killed brood test Pros:

cheapest

Cons:

- Physical damage
- Poor repeatability and discriminatory ability

Thermal killing-Freeze killed brood test – FKB Pros:


Good discriminatory ability

Cons:

- More expensive
- Practical issues

Practical and precision issues of FKB

"Collateral damages"

Leakage

FKB* variant method

The tested area is cut out from the comb and frozen at a separated location

Aim of the work

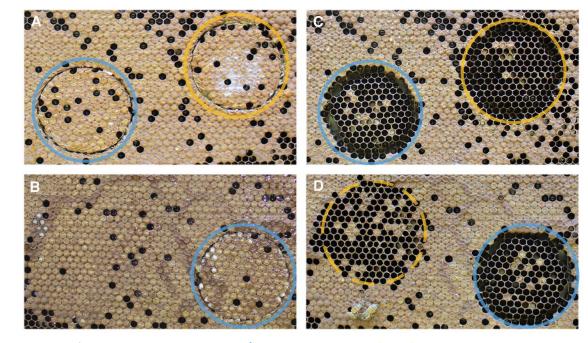
- 1. Compare the two methods
- 2. Estimate genetic parameters for HB measured with the optimized method

Comparison of two FKB recording methods

- 25 colonies (no pedigree information)
- Six repetitions during spring/summer 2016
- Two test were carried out on the same comb at the same time

$$HB = \mu + \text{Time} + \text{Breeder} + Colony + \varepsilon$$

Breeding population phenotyping and genetic parameters estimation


- 151 colonies with known pedigree were phenotyped in 2017 and 2018
- HB was measured twice with FKB* during productive season

Average HB model
$$\rightarrow$$
 heritability
$$HB = \mu + \text{Apiary} + A_{\overline{w}} + \varepsilon$$

Repeatability model \rightarrow heritability and repeatability $HB = \mu + \text{Time} * \text{Apiary} + A_{\overline{w}} + pe + \varepsilon$

Results - visual comparison

- ✓ Reduces collateral damage
- ✓ Faster
- ✓ Cheaper

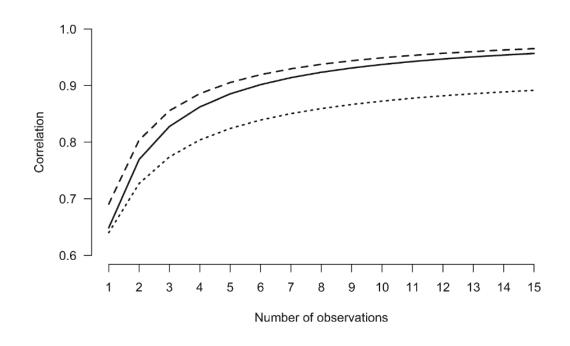

Visual comparison FKB* vs FKB standard

Table I. Practical aspects of the FKB and FKB* methods

	FKB	FKB*
Liquid nitrogen	~3 colonies/l	~8 colonies/l
Time	15-20 min/colony	7–10 min/colony
Tubes (cylinders)	2 for each colony	1 for all colonies
Tested area	1 side	2 sides
Photo analysis	2/colony	4/colony

Results - methods parameters comparison

	FKB	FKB*
Var (C)	0.016 (0.008)	0.012 (0.005)
Var (e)	0.022 (0.005)	0.013 (0.003)
Var(P)	0.038 (0.008)	0.024 (0.005)
r	0.42 (0.15)	0.48 (0.13)
r_P	0.64 (0.09)	
r_C	0.93 (0.13)	
r_e	0.42 (0.12)	

FKB* resulted more repeatable and accurate

FKB and FKB* showed a high correlation for the colony effect,

therefore they measure the "same trait"

To accurately measure HB the test should be repeated at least twice

Results - heritability and repeatability

	Average model	Repeatability model
Var (w)	0.007 (0.005)	0.007 (0.005)
Var (pe)	_	0.0003 (0.0039)
Var (e)	0.011 (0.004)	0.022 (0.003)
Var(P)	0.018 (0.002)	0.029 (0.003)
h^2	0.37 (0.25)	0.23 (0.16)
r	_	0.24 (0.09)
$\overline{r}_{\hat{A},A}$	0.50	0.50

Heritability for the average FKB* is 0.37, indicating good prospects for genetic improvement of HB in the studied population

Conclusions

FKB* is a method which optimizes time and costs for HB
 phenotyping → suitable for large scale phenotype collection in
 the context of breeding program

Original article

© The Author(s), 2019

DOI: 10.1007/s13592-018-0627-6

Hygienic behaviour in honeybees: a comparison of two recording methods and estimation of genetic parameters

Elena Facchini¹, Piter Bijma², Giulio Pagnacco¹, Rita Rizzi¹, Evert Willem Brascamp²

¹Department of Veterinary Medicine, University of Milano, via G. Celoria 10, 20133, Milan, Italy
²Animal Breeding and Genomics, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, The Netherlands

Received 20 July 2018 - Revised 4 December 2018 - Accepted 14 December 2018

elena.facchini@hendrix-genetics.com

Better Breeding Today. Brighter Life Tomorrow.

