

University of Lisbon Faculty of Veterinary Medicine


Current uses and challenges of microalgae in animal feeding

José A M Prates

EAAP 2019, Ghent (Belgium)

Microalgae definition

- Very diverse group of aquatic photosynthetic microorganisms (estimated as >100,000 species)
- Mostly eukaryotic organisms (diatoms, green algae and golden algae)
- But also some prokaryotic organisms (cyanobacteria or blue-green algae)

Eukaryotic microalga (e.g. Chlorella)

Some MA used for animal feeding

- Spirulina (Arthrospira) is rich in proteins (>60%)
- Chlorella is an important source of several nutrients
- Isochrysis galbana is rich in lipids (>20%, EPA+DHA)
- Schizochytrium is rich in lipids (>40%, DHA)
- Nannochloropsis is rich in lipids (>30%, EPA)

Potential benefits

- <u>Richness in nutrients</u> (proteins, lipids, carbohydrates, vitamins, minerals and antioxidants)
- <u>Agriculture sustainability</u> (alternative to staple food crops, mainly soybean and corn)
- <u>Livestock production systems sustainability</u> (novel sustainable raw materials, mainly for monogastrics)
- <u>Environment sustainability</u> (avoiding land degradation and saving water)
- <u>Fish stocks sustainability</u> (alternative to fatty fish as EPA+DHA source, mainly for aquaculture)

Nutritional composition of some species

Analysis	Arthrospira platensis	Chlorella sp.	Isochrysis sp.	Schizochytrium sp.
Crude protein (%)	60.3-65.8	37.7-47.8	27.0-45.4	12.1
Alanine (%)	5.4-6.5	4.6	2.4-3.2	0.6
Arginine (%)	4.0-4.9	3.1	2.1-2.5	1.2
Aspartic acid (%)	2.4-9.2	4.7	2.5-4.2	4.8
Cystine (%)	0.4-0.5	0.7	0.2-1.4	< 0.1
Glutamic acid (%)	5.7-10.7	5.8	3.0-4.6	1.2
Glycine (%)	1.8-5.2	3.4	1.8-2.6	0.4
Histidine (%)	1.5-2.7	2.2	0.6-0.9	0.1
Isoleucine (%)	4.2-4.4	2.0	1.5-1.8	0.2
Leucine (%)	5.5-8.0	4.7	2.7-3.9	0.8
Lysine (%)	2.9-3.0	4.0	1.8-2.5	0.4
Methionine (%)	1.2-1.6	1.2	0.8-1.4	< 0.1
Phenylalanine (%)	3.0-5.8	2.7	1.8-3.8	0.3
Proline (%)	2.0-4.0	2.5	1.8-2.4	0.3
Serine (%)	2.8-4.3	1.0	1.5-2.2	0.5
Threonine (%)	2.9-4.9	2.5	1.5-2.4	0.5
Tryptophan (%)	0.1-2.5	1.0	0.5-0.6	< 0.1
Tyrosine (%)	3.2-3.3	2.4	1.2-3.8	0.2
Valine (%)	4.2-4.6	3.0	1.8-2.4	0.3
Crude carbohydrates (%)	17.8-22.6	18.1-27.5	13.3-18.0	32.0
Crude fibre (%)	0.5-1.8	0.4-1.4	< 18.0	0.6
Crude fat (%)	1.8-7.3	13.3-20.9	17.2-27.3	38.0-71.1
DHA (g/kg)	< 3.0	< 26.0	< 34.0	104-204
EPA (g/kg)	< 2.5	< 4.0	< 3.5	< 20.0
Ash (%)	6.5–9.5	6.2-7.3	9.7-16.1	8.2

Madeira et al. 2017, Livest Sci 205 111

Effect on growth performance of ruminants

Microalga	Level in the diet (% dry matter) and experiment duration	Animal and initial weight/age	Main findings
Ruminants			
Arthrospira platensis	1.18% for 90 days	Dairy cows	Increase of body condition by 8.5-11%
Arthrospira platensis	10-20% for 6 weeks	Weaned lambs with 37.6 kg	No effect on ADG
		and 6 weeks	Increase of body weight (10% dosage)
			Increase of backfat thickness (20% dosage)
Arthrospira platensis	0.01% for 5 weeks	Lambs with 46.5 kg	Increase of ADG, ADFI and final body weight
			Decrease of FCR
Isochrysis sp.	4% from 14.7 to 26.2 kg	Weaned male lambs with	No effect on ADG, ADFI, FCR, carcass weight,
		14.7 kg	carcass yield and backfat thickness
Schizochytrium sp	3.97% for 6 weeks	Dairy cows	Decrease of feed intake
Schizochytrium spp.	1-3% for 18 weeks	Lambs with 22.7 kg	No effect on ADG, ADFI, FCR and carcass
			traits
(DHA-Gold extract)			Increase of backfat thickness
Schizochytrium sp.	1.92% for 6 weeks	Lambs with 34.8 kg and 3	No effect on ADG, FCR and carcass weight
(DHA-Gold extract)		months	
Schizochytrium spp.	3.89% from 16.3 to 26.7 kg	Lambs with 16.3 kg and	Decrease of ADG and feed intake
(DHA-Gold extract)		55.1 days	Increase of slaughter age
			No effect on carcass traits
Schizochytrium sp.	2% from 15.3 to 26.0 kg	Weaned male lambs with	Decrease ADG and feed intake
(DHA-Gold extract)		15.3 kg and 7-8 weeks	Increase fattening period
			No effect on final live weight
			Madaira at al. 2017 Livest Sci 205 111

Madeira *et al.* 2017, Livest Sci 205 111

Arthrospira as feed additive in weaned lambs used as growth promoter

Effect on meat quality of ruminants

Microalga	Level in the diet (% dry matter) and experiment duration	Animal and initial weight/age	Main findings
Ruminants			
Isochrysis sp.	4% from 14.7 to 26.2 kg	Weaned male lambs with 14.7 kg	No effect on chemical composition (fat, protein, moisture and ash), colour a
			Increase of MUFA, PUFA, CLA, EPA, DPA, DHA and TBARS at 7 days
			Decrease of vitamin E
Schizochytrium spp.	1-3% for 18 weeks	Lambs with 22.7 \pm 3.90 kg	No effect on SFA and PUFA
(DHA Gold extract)			Increase of total n-3 FA, EPA and DHA
			Decrease of n-6/n-3 ratio
Schizochytrium sp.	1.92% for 6 weeks	Lambs with 34.8 kg and 3 months	No effect on colour and pH
(DHA-Gold extract)			Increase of cooking loss
			Increase of total n-3 FA, EPA and DHA
A11 1			Decrease of n-6/n-3 ratio
Schizochytrium spp.	3.89% from 16.3 to 26.7 kg	Lambs with 16.3 kg and 55.1 days	No effect on pH and a*
(DHA Gold extract)			Increase of L*, b* and TBARS
			Decrease of odour, flavour and overall acceptability
Schizochytrium sp.	1.8% for 20 weeks	Lambs with 35.3 kg and 9 months	No effect on colour, muscle fat, SFA and MUFA
			Increase of long chain n-3 FA, total n-3 FA, PUFA, EPA, DHA, PUFA/SFA rat
			TBARS
200 B 3		to a very second second	Decrease of vitamin E and n-6/n-3 ratio
Schizochytrium sp.	2% from 15.3 to 26.0 kg	Weaned male lambs with 15.3 kg and 7-8 weeks	Increase of n-3 FA, PUFA and DHA of neutral lipids and SFA, n-3 FA and PU
(DHA-Gold extract)			polar lipids, and PUFA/SFA ratio
			Decrease of n-6/n-3 ratio

Madeira et al. 2017, Livest Sci 205 111

Mainly used at low levels to increase meat/milk EPA+DHA

Effect on growth performance of pigs

Microalga	Level in the diet (% dry matter) and experiment duration	Animal and initial weight/age	Main findings
Pigs			
Arthrospira maxima	Biomass enriched with Cu from 20 to 105 kg	Piglets with 20.9 kg	No effect on ADG, ADFI and FCR
Arthrospira platensis	0.2% from 30.6 to 96.4 kg	Fattening pigs with 30.6 kg and 85 days of age	Increase of ADG and FCR No effect on backfat thickness
Arthrospira platensis and Chlorella vulgaris	1% for 14 days	Weaned piglets with 9.1 kg and 28 days	No effect on ADG, ADFI and FCR
Chlorella spp.	0.0002% from 30-55 kg	Female pigs with 30 kg and 3 months	No effect on ADG, body weight, hot carcass weight, lean muscle thickness and backfat thickness
Chlorella vulgaris	0.1-0.2% for 6 weeks	Growing pigs with 26.6 kg	Increase of ADG (0.1% dosage) No effect on ADFI, G:F and body weight
Schizochytrium sp.	1.10-5.51% from day 79 to 106 0.39-1.94% from day 107 to 120	Weaned castrated male swine with 9.07 kg	No effect on ADFI, body and organs weight Increase of ADG and FCR
Schizochytrium sp.	0.25% for 8 weeks 0.50% for 4 weeks	Barrows with 118 kg	No effect on ADG, FCR and backfat thickness

Madeira et al. 2017, Livest Sci 205 111

Improved health status of weaned piglets

Contrasting impacts on growth as feed additive

Effect on meat quality of pigs

Microalga	Level in the diet (% dry matter) and experiment duration	Animal and initial weight/age	Main findings
Pigs			
Arthrospira platensis	0.2% from 30.6 to 96.4 kg	Fattening pigs with 30.6 kg and 85 days	No effect on ash, protein, colour, pH, cooking loss and tenderness Decrease of intramuscular fat
Chlorella spp.	0.0002% from 30-55 kg	Female pigs with 30 kg and 3 months	No effect on colour, pH, TBARS, cooking loss and drip loss
Schizochytrium sp.	0.25% for 8 weeks	Barrows with 118 kg	No effect on chemical composition, colour and pH
(DHA-Gold extract)	0.50% for 4 weeks		Increase of DHA
	0.25% for 4 weeks		Decrease of n-6/n-3 ratio
Schizochytrium sp.	0.3-1.2% for 45 days	Female pigs with 75 kg	No effect on proximate composition (dry matter, fat and protein), colour, TBARS Increase of EPA and DHA

Madeira et al. 2017, Livest Sci 205 111

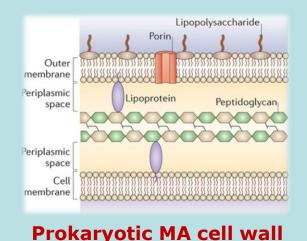
Mainly used as feed additive to increase meat EPA+DHA

Effect on growth performance of poultry

Art 1			Main Calinas				
Microalga	Level in the diet (% dry matter) and experiment duration	Animal and initial weight/age	Main findings				
Poultry							
Arthrospira sp.	4-8% for 16 days	Male chicks with 678 g and 21 days	No effect on ADG				
Arthrospira platensis	1.5-2.5% for 4 weeks	Hens with 1.5 kg and 63 weeks	No effect on ADFI and FCR				
Arthrospira platensis	6-21% for 21 days	Broiler chickens with 30 weeks	No effect on ADG, ADFI an	d FCR			
Arthrospira platensis	0.5-1.5% for 36 days	Broiler chicks 1 day-old	Increase of ADG (1% dosag Decrease of FCR (1% dosag				
Arthrospira platensis	0.5-1% for 42 days	Chicks with 49 g	No effect on ADG and FCR				
Chlorella sp.	0.00003% for 42 days	Broiler chicks day-old	Increase of ADG				
			No effect on F:G				
Chlorella vulgaris	0.07-0.21% for 42 days	Broiler chicks day-old		adeira <i>et al.</i> 20 ivest Sci 205 1			
			No effect on ADG	ivest Sci 205 I			
Chlorella sp.	1% for 28 days	Male broiler chicks day-old	Increase of ADG				
			No effect on ADFI and FCR				
Chlorella sp.	1.25% for 25 to 39 weeks	Laying hens with 25 weeks	Decrease of FCR				
			No effect on feed intake				
Chlorella sp.	0.1-0.2% for 42 days	Male Pekin ducks day-old	Increase of ADG and feed in	ntake			
			No effect on G:F				
Porphyridium sp.	5-10% for 10 days	Chickens with 30 weeks	No effect on body weight				
			Decrease of ADFI				
Schizochytrium JB5	0.1-0.2% for 35 days	Broiler chicks with 42.6 g	No effect on ADG, ADFI an	d FCR			
Schizochytrium sp.	3.7-7.4% from day 21 to 35	Broilers with 21 days	No effect on FCR and carca	iss yield			
(DHA-Gold extract)			Increase of ADG (7.4% dos	age), ADFI (7.4%			
			dosage)				
Schizochytrium sp.	7.4% from day 21 to 35	Broilers with 21 days	Increase of ADG, ADFI and	carcass yield			
(DHA-Gold extract)			Decrease of FCR				

Contrasting impacts on growth for different inclusion levels

Effect on meat quality of poultry

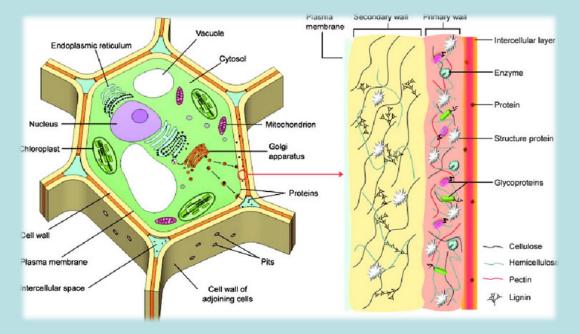

Microalga	Level in the diet (% dry matter) and experiment duration	Animal and initial weight/age	Main findings
Poultry			
Arthrospira sp.	4-8% for 16 days	Male chicks with 678 g and 21 days	Decrease of L* (4% dosage) from <i>semitendinosus</i> and <i>sartorius</i> muscles Increase of a* (4% dosage) from <i>Psoas superficialis</i> and <i>Psoas sartorius</i> musc b* (8% dosage) from all muscles
Arthrospira platensis	0.5-1% for 42 days	Chicks with 49 g	No effect on SFA, MUFA, PUFA, EPA, DHA and TBARS in breast meat Increase of PUFA, EPA and DHA in thigh meat Decrease of MUFA in thigh meat
Chlorella sp.	0.00003% for 42 days	Broiler chicks day-old	Decrease of TBARS
Chlorella vulgaris	0.1-0.2% for 42 days	Male Pekin ducks day-old	Increase of b*, pH and shear force in breast meat and L* and b* in leg me
Schizochytrium sp.	2.8-5.5% for 3 weeks	Male broilers with 4 weeks	Increase of SFA (5.5% dosage), total n-3 FA, EPA, DHA and TBARS Decrease of total n-6 PUFA and flavour scores
Schizochytrium JB5	0.1-0.2% for 35 days	Broiler chicks with 42.6 g	Increase of oleic acid, USFA, total n -3 FA and DHA Decrease of stearic acid (0.1% dosage), SFA, SFA/USFA ratio and n -6/ n -3 1
Schizochytrium sp. (DHA Gold extract)	3.7-7.4% from day 21 to 35	Broilers with 21 days	No effect on colour, pH, cooking loss, shear force and MUFA Increase of SFA, total n-3 FA, LCPUFA, EPA, DHA, n-6/n-3 ratio and TBAR Decrease of total n-6 FA, vitamin E, flavour and overall acceptability
<i>Schizochytrium</i> sp. (DHA Gold extract)	7.4% from day 21 to 35	Broilers with 21 days	No effects on pH and cooking loss Increase of SFA, total n-3, LCPUFA, EPA, DHA, off-flavour and TBARS Decrease of MUFA, total n-6, PUFA/SFA ratio, n-6/n-3 ratio, vitamin E, flav overall acceptability

Madeira et al. 2017, Livest Sci 205 111

Mainly used at low levels to increase meat yellowness and EPA+DHA

Current use in animal feeding is limited

- MA have interesting properties for animal feeding
- Mainly used in fish farming (aquaculture)
- Feed additive to improve product quality (colour and n-3 LCPUFA)
- Feed additive to improve young animals health (prebiotic effect)
- Are largely indigestible (monogastrics) due to their complex and recalcitrant cell walls

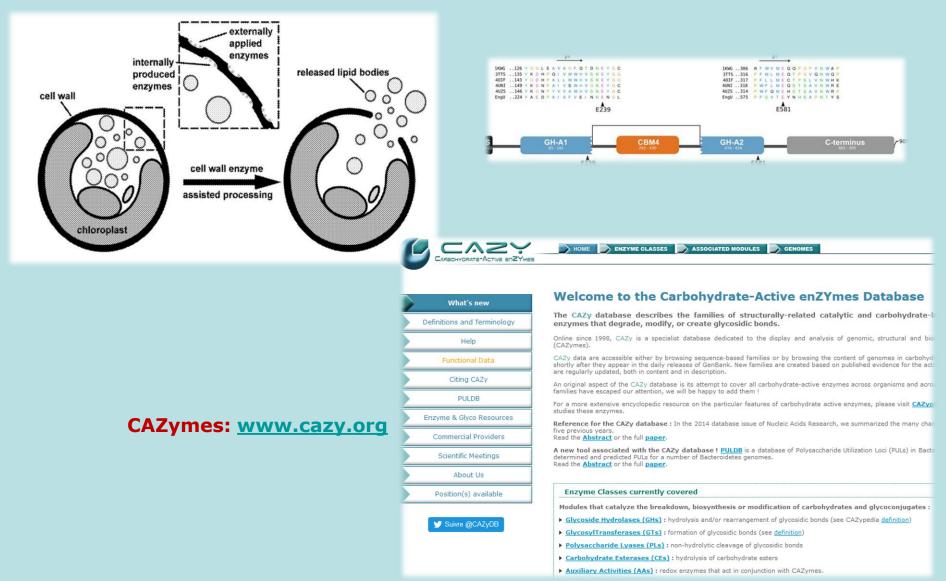


External cell wall Pectin, agar, alginate, or algaenan polymer Internal cell wall Hemicellulose Iicrofibril matrix of cellulose

Eukaryotic MA cell wall

Challenge to improve digestibility

- These cell walls are distinct from those of terrestrial plants
- New enzymes are needed for MA cell wall degradation

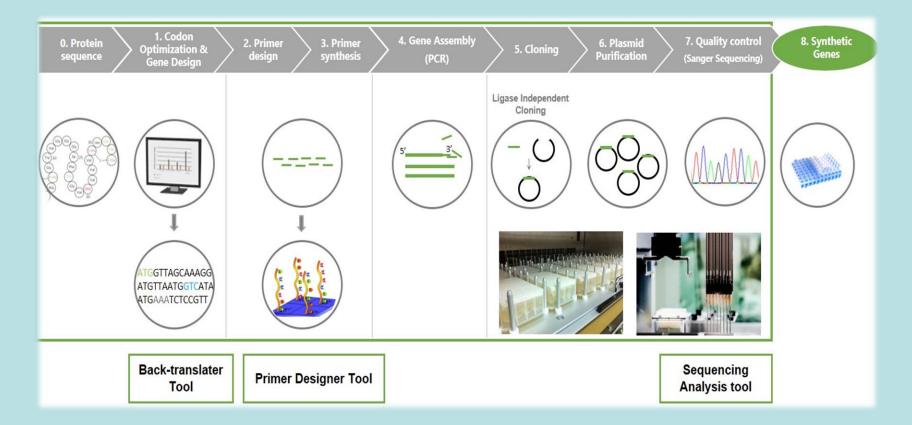


Commercial mixtures of carbohydrate-active enzymes for cereal-based diets (monogastrics):

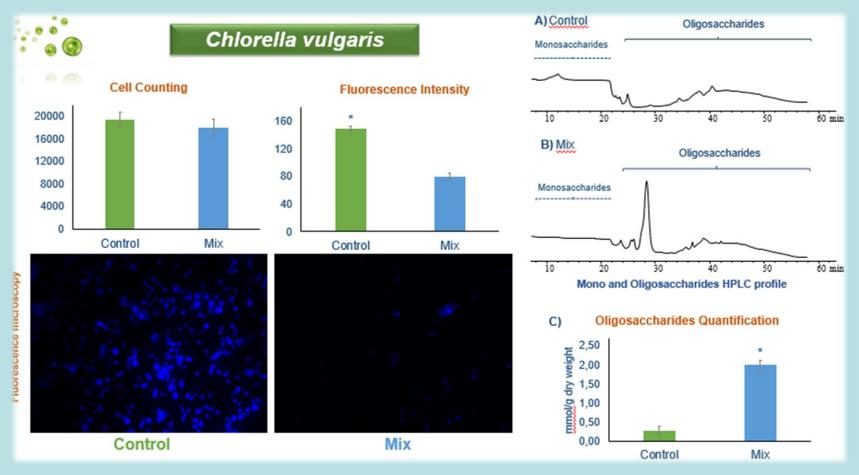
- Rovabio® (Adisseo)
- Econase[®] (AB Vista)
- Naturgrain® (BASF)
- Ronozyme® (DSM)

Typical plant cell wall

Enzymatic valorisation of microalgae


27 August 2019

JAMP, 14


Pre-selection of 200 CAZymes and sulfatases (marine origin)

ID	Name	Category	E.C	Main Substrate	Organism	Catalytic Domain	Mw (kDa)	Protein Sequence
4	Licheninase	1,3-1,4-8-Glucanases	3.2.1.73	1,3-1,4-β-glucans	Clostridium thermocellum	GH16	26,72	MKNRVISLLMASLLLVLSVIVAPFYKAEAATVVNTPFVAV
5	Cellulose 1,4-β-cellobiosidase	Cellobiohydrolases	3.2.1.91	Phosphoric acid-swollen cellulose, Avicel and others forms of insoluble cellulose	Clostridium cellulolyticum	GH48	80,21	MSKNFKRVGAVAVAAAMSLSIMATTSINAASSPANKVY
6	Glucan endo-1,3-β-D-glucosidase	1,3-β-Glucanases	3.2.1.39	1,3-8-glucans such as laminarin	Clostridium thermocellum	GH81	82,63	MLKKKTIISLVLAAIILGSIIQPFEIANAQYYREGTGSYTVVLF
7	Chitinase	Chitinases & Chitosanases	3.2.1.14	Chitin and pNP-chitotriose	Clostridium thermocellum	GH18	43,93	MKKIPLLMLLSAIIFLSLHPTLSYAQDDSLPTKRIVGYFAE
8	Cellulose 1,4-β-cellobiosidase	Cellobiohydrolases	3.2.1.91	Phosphoric acid-swollen cellulose, Avicel and others forms of insoluble cellulose	Clostridium thermocellum	GH48	81,62	MVKSRKISILLAVAMLVSIMIPTTAFAGPTKAPTKDGTSYK
9	•	Mini-Cellulosome	3.2.1.73	Variety of cellulosic substrates	Clostridium thermocellum	3×GH16 + Coh-Coh- Coh	1000: 34.94	MKNRVISLLMASLLLVLSVIVAPFYKAEAATVVNTPFVAV
10	Endo-8-N-acetylglucosaminidase	Acetylglucosaminidases	3.2.1.96	Mammalian high mannose N-glycans (HMNG), such as Man9GlcNAc2	Bacteroides thetaiotaomicron VPI-5482	GH18	50,35	DDLEVGKNIDESAYSGIYENNAYLRDGKSNLVSKVVELHG
11	Cellulase	Cellulases	3.2.1.4	1,3-1,4-β-glucans and soluble 1,4-β-glucans	R subtilis LN	GH16	26,12	MPYLKRVLLLLVTGLFMSLFAVTSTASAQTGGSFFDPFN
12	β-1,4-glucanase	Cellulases	3.2.1.4	Amorphous cellulose (PASC)	Clostridium thermocellum F7	GH48	74,8	MKLRYKVRRRRBIITCCGIIAAVIVVSTLIITIKNSFKPSRQS
13	Laccase	Laccases	1.3.3.5	2,20-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)	Bacillus subtilis subsp. subtilis sti. 168	AA NC	60,55	MTLEKFVDALPIPDTLKPVQQSKEKTYYEVTMEECTHQL
14	Unsaturated rhamnogalacturonyl hydrolase	Rhamnogalacturonases	3.2.1.172	Unsaturated rhamnogalacturonan (RG)	R subtills subsp. subtills str. 168	GH105	43,49	MGSMDQSIAVKSPLTYAEALANTIMNTYTVEELPPANRV
15	Laccase / Multicopper oxidase	Laccases	1.10.3	2,20-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)	Escherichia coli K-12 MG1655	AANC	55,47	MQRRDFLKYSVALGVASALPLWSRAVFAAERPTLPIPDL
16	Unsaturated rhamnogalacturonyl hydrolase	Rhamnogalacturonases	3.2.1.172	Rhamnogalacturonan oligosaccharides	Bactercides thetaictacmicron VPI-5482	GH105	52,65	AQKKKAVINDSNTPLHLLQPAYQGTYGDLTPEQVKKDIDF
17	Laminarinase	1,3-β-Glucanases	3.2.1.39	1,3-β-glucans such as laminarin	Thermotoga maritima MSB8	GH16	30,79	MMSRLVFALLLFPVFILAQNILGNASFDEPILIAGVDIDPP
18	GlcNAc-α-1,4-Gal-releasing endo-β- galactosidase	Galactosidases	3.2.1	GlcNAc-a-1,4-Gal-p-1,3-GalNAc-a1-Ser/Thr	Clostridium perkingens ATCC 10543	GH16	33,7	MEVEMLLLLPETISKAKDEPANPIEKAGYKLDESDEENG
19	Chitinase 1	Chitinases & Chitosanases	3.2.1.14	Chitin and chitosan	Bacillus licheniformis DSM 13 = ATCC 14580	GH18	49,24	MKIVLINKSKKFFVFSFIFVMMLSLSFVNGEVAKADSGKN
20	Endo-8-1,3-glucanase	1,3-β-Glucanases	3.2.1.39	Lichenan and Iaminarin	Pyrococcus furiosus DSM 3638	GH16	30,87	MKKEALLFLSLIFLVFVSGCIHHSTNQQLSSKQQVPEVIEID
21	Oligoalginate lyase	Alginate lyases	4.2.2.	Low-viscosity alginate	Saccharophagus degradans 2- 40	PL17	81,37	MLSVNTIKNTLLAAVLVSVPATAQVSGNGHPNLIVTEQDV
22	Xylanase D / Lichenase	1,3-1,4-β-Glucanases	3.2.1.73 3.2.1.8	1,3-1,4-β-glucans, in particular lichenan	Ruminococcus Havefaciens 17	GH16	30,59	MKKSIFKRYAAAVGLMASVLMFTAVPTTSNAADDQKTG

Cloning, expression and production by an HTP platform

Individual and combined in vitro screening of enzymes

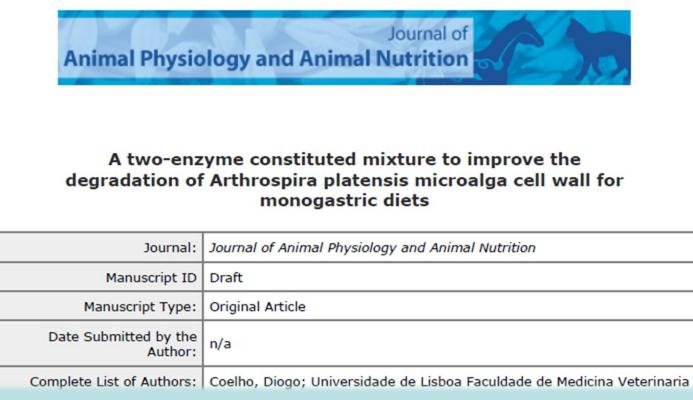
27 August 2019

JAMP, 17

Validation of the effective mix of enzymes

60

66 93 101


27 August 2019

		Sup	ernatant			Resid	lue			
	Control	Mix	SEM	p-value	Control	Mix	SEM	p-value		
Total proteins (mg/g microalgae)	14.6	341.2	17.01	< 0.001	776.4**	453.8**	17.03	< 0.001		
Chlorophyll a (mg/g microalgae)	0.109*	0.116*	0.006	0.429	2.12**	2.86**	0.301	0.158		
Chlorophyll b (mg/g microalgae) Total chlorophylls	0.154*	0.153*	0.010	0.948	1.27**	2.07**	0.388	0.217		
(mg/g microalgae)	0.263*	0.269*	0.016	0.799	3.39**	4.93**	0.684	0.187		
Total carotenoids (mg/g microalgae)	0.076*	0.083*	0.002	0.032	0.346**	0.268**	0.024	0.185	Enzymatic Thermostability	
Total fatty acids (mg/g microalgae)	2.24	2.67	0.417	0.496	23.8	26.4	1.4 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 0.8 0.6 0.4	***		
Fatty acid composition	on (% total	fatty acids)					.1,0 0,8		X	
14:0	1.81	1.21	0.216	0.097	1.37	1.30	0.00 0,6			
		Proteolysis resis	stance				Droten	· · · · · · · · · · · · · · · · · · ·	2 & & & & & & & & & & & & & & & & & & &	
		ID			Time (min)		120 No Head	alle		
			15	30	60	90	120 + ⁰¹		Temperature °C	

+ +

-

Enzyme mix selected for Spirulina degradation

Under minor revision, JAPAN

Mix

Lysozyme $104 + \alpha$ -amylase (2) 72

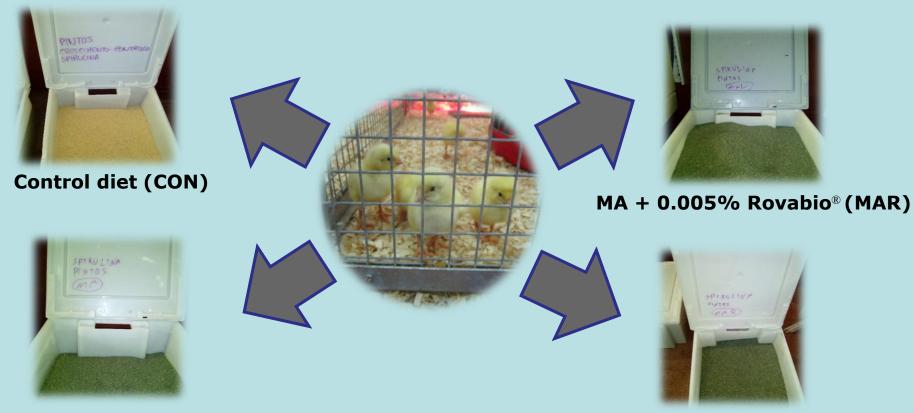
Pr Patent nº20191000008190, INPI, PT

Enzyme mix selected for Chlorella degradation

SCIENTIFIC REPORTS

OPEN Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall

Received: 4 November 2018 Accepted: 17 March 2019 Published online: 29 March 2019


Diogo Coelho¹, Paula A. Lopes¹, Vânia Cardoso², Patrícia Ponte², Joana Brás², Marta S. Madeira¹, Cristina M. Alfaia¹, Narcisa M. Bandarra³, Henri G. Gerken⁴, Carlos M. G. A. Fontes^{1,2} & José A. M. Prates 1,2

Coelho et al. 2019, Sci Rep 9 5382

Exo-β-glucosaminidase, Alginate lyase, Peptidoglycan N-acetylmuramic acid deacetylase and Lysozyme (CPE1314) (ID 60, 66, 93 and 101, Mix respectively)

Pr Patent nº20181000067928, INPI, PT

Spirulina in broilers: experiment

15% Spirulina (MA)

MA + 0.01% Lysozyme (MAL)

120 one-day broilers (n=30)

Experiment from d21 to d35

Spirulina in broilers: growth performance

Item	$\rm CON^1$	MA^1	MAR ¹	MAL ¹	SEM	P-value	
Body weight, g							
d 21	723	742	787	728	24.8	0.262	
d 28	1,244	1,198	1,225	1,137	32.3	0.117	
d 35	1,802 ^b	1,697 ^{ab}	1,717 ^{ab}	1,613ª	39.2	0.016	
Body weight gain, g	-	-		-			
d 21-28	74.5 ^b	65.2ª	62.6ª	58.5ª	1.83	< 0.001	
d 28-35	93.0 ^b	83.2ª	82.0ª	79.3ª	2.25	< 0.001	
d 21-35	83.8 ^b	74.2ª	72.3ª	68.9ª	1.83	< 0.001	
Feed Intake, g							
d 21-28	107	105	107	97.9	3.09	0.126	
d 28-35	141	138	138	132	3.3	0.342	
d 21-35	124	121	122	115	3.0	0.191	
Feed conversion ratio							
d 21-28	1.44ª	1.60 ^b	1.71 ^c	1.68 ^{bc}	0.022	< 0.001	
d 28-35	1.51ª	1.66%	1.68b	1.67	0.021	< 0.001	
d 21-35	1.48ª	1.63 ^b	1.70 ^b	1.67	0.017	< 0.001	
Relative weight of GI2 tr	act, g/kg BW	7					
Crop	2.62	2.91	2.98	2.53	0.221	0.418	Pestana <i>et al</i>
Gizzard	12.2	14.3	13.1	14.2	0.61	0.061	Submitted
Liver	21.8	23.7	22.4	23.5	0.90	0.422	Submitted
Pancreas	2.30	2.38	2.25	2.37	0.126	0.870	
Duodenum	4.77	5.06	5.33	4.82	0.223	0.283	
Jejunum	9.45	9.57	9.26	9.03	0.354	0.722	
Ileum	8.29 ^{ab}	8.19 ^{ab}	7.39ª	8.52 ^b	0.281	0.042	
Caecum ³	3.74	3.79	4.68	3.63	0.361	0.164	
Relative length of GI trad	ct. cm/kg BW	7					
Duodenum	13.1ª	15.7	15.5 ^b	14.8 ^b	0.52	0.006	
Jejunum	33.6ª	37.8 ^b	37.0 ^{ab}	37.8 ^{ab}	1.10	0.034	
Ileum	37.2	38.7	38.8	40.7	1.15	0.224	
Caecum	8.08	8.44	8.12	8.02	0.329	0.812	
Content viscosity, cP							
Duodenum + jejunum	4.84ª	7.08 ^{ab}	7.32 ^{ab}	9.20 ^b	1.071	0.039	
Ileum	9.19	10.8	11.8	10.8	0.962	0.306	
ALCOHII	1.11	10.0	11.0	10.0	0.702	0.500	

Spirulina decreased birds performance and increased some GI compartments and digesta viscosity

Lysozyme aggravated these MA effects on performance

Spirulina in broilers: health status

Item	$\rm CON^1$	MA1	MAR ¹	MAL^1	SEM	P-value	
Total lipids, mg/dL ²	490ª	588 ^d	535 ^b	556°	4.5	<0.001	
Triacylglycerols, mg/dL	84.0ª	142¢	86.0 ^{ab}	90.9 ^b	1.42	< 0.001	
Total cholesterol, mg/dL	128ª	148 ^b	157 ^{bc}	150°	2.2	< 0.001	
HDL-C, mg/dL3	107	105	104	110	1.8	0.130	
LDL-C, mg/dL3	4.50ª	14.1 ^b	28.6 ^c	29.3°	0.710	< 0.001	
VLDL-C, mg/dL3	16.8ª	28.4 ^c	17.2 ^{ab}	18.2 ^b	0.28	< 0.001	
Glucose, mg/dL	287 ^b	265ª	263ª	273 ^{ab}	5.4	0.017	Pestana <i>et al.,</i>
Urea, mg/dL	1.45 ^{ab}	1.10ª	2.74 ^c	1.68 ^b	0.106	< 0.001	Submitted
Total protein, g/dL	2.73ª	2.65ª	3.11 ^b	3.33¢	0.032	< 0.001	
Creatinine, mg/dL	0.018 ^b	0.006ª	0.019 ^b	0.005ª	0.0010	< 0.001	
ALT ⁴ , U/L	12.5	13.5	12.6	12.1	0.91	0.737	
AST ⁵ , U/L	255⁵	152ª	585°	2386	15.9	< 0.001	
ALP ⁶ , U/L	2821c	1760 ^b	1063ª	2956°	65.8	< 0.001	
γ -GT ⁷ , U/L	15.5 ^{ab}	20.7¢	13.7ª	17.2 ^b	0.84	< 0.001	
TAC ⁸ , µM (Trolox equiv.)	460	399	465	432	26.7	0.288	

Birds remained healthy during the entire trial

Spirulina in broilers: meat quality

	$\rm CON^1$	MA1	MAR ¹	MAL^1	SEM	P-value	CON1	MAl	MAR	1 MA	L1	SEM	P-value
	Breast muscle												
pH24h	5.79	5.77	5.82	5.70	0.060	0.559	5.83	5.84	5.87	5.7	77	0.060	0.739
Lightness (L*)	49.2	46.6	47.6	46.9	0.84	0.139	49.2	49.0	48.0	47	.4	0.47	0.051
Redness (a*)	4.53	5.31	5.50	5.37	0.288	0.089	8.25ª	9.49 ^{ab}	9.91	9.6	7 ^{ab}	0.430	0.046
Yellowness (b*)	4.38ª	10.7 ^b	11.7 ^b	12.3 ^b	0.546	<0.001	5.38ª	12.9 ^b	12.4	13.	.5 ^b	0.459	<0.001
Cooking loss, %	14.7	12.6	13.7	12.8	1.05	0.501	17.8	18.3	17.3	19	.0	1.02	0.657
Shear force, kg	1.63	1.53	1.61	1.66	0.135	0.909	2.22	2.26	2.26	2.0	03	0.113	0.444
Diterpene profile, µg/g													
α-Tocopherol		4.03ª	2.18 ^b	2.18 ^b	2.35 ^b	0.187	< 0.001	7.33ª	3.65 ^b	3.29 ^b	4.33⁵	0.294	<0.001
γ-Tocopherol		0.618ª	0.270 ^b	0.279 ^b	0.288b	0.0329	< 0.001	0.658ª	0.345b	0.308 ^b	0.379%	0.0326	<0.001
a-Tocotrienol		nd	nd	nd	nd	-	-	0.313	0.249	0.260	0.301	0.0274	0.296
γ-Tocotrienol		nd	nd	nd	nd	-	-	0.291	0.247	0.297	0.298	0.0394	0.767
Pigments, µg/100 g													
Chlorophyll a ²		8.78	10.6	10.7	9.53	1.491	0.774	4.90	10.1	9.75	8.36	1.905	0.219
Chlorophyll b ³		13.7	16.6	17.7	15.5	2.50	0.703	8.51	13.8	12.8	10.8	2.974	0.608
Total chlorophylls ⁴		22.4	27.2	28.4	25.1	3.89	0.716	13.4	23.9	22.6	19.2	4.721	0.414
Total carotenoids5		48.6ª	161 ^b	159 ^b	183 ^b	11.45	< 0.001	48.8ª	153 ^b	1580	186 ^b	9.46	<0.001
Total chlorophylls and carotenoids ⁶		71.0ª	188 ^b	187 ^b	208 ^b	13.00	<0.001	62.2ª	177 ^b	181 ^b	208 ^b	10.70	<0.001

Pestana et al., Submitted

Higher values of yellowness

Spirulina in broilers: conclusions

- Incorporation of 15% Spirulina decreased birds performance
- Mediated by increased digesta viscosity and lower protein digestibility
- Due to the resistance of MA liberated proteins to endogenous peptidases
- Lysozyme was effective in the degradation of SP cell wall and aggravated performance impairment of SP
- Commercial carbohydrate-degrading enzymes are not effective in the degradation of SP cell wall
- Meat quality and animal health was only slightly affected by SP, but not by enzymes
- Supplementation of diets receiving SP with lysozyme and a SP proteins-specific peptidase is a promising approach

Spirulina in piglets: experiment

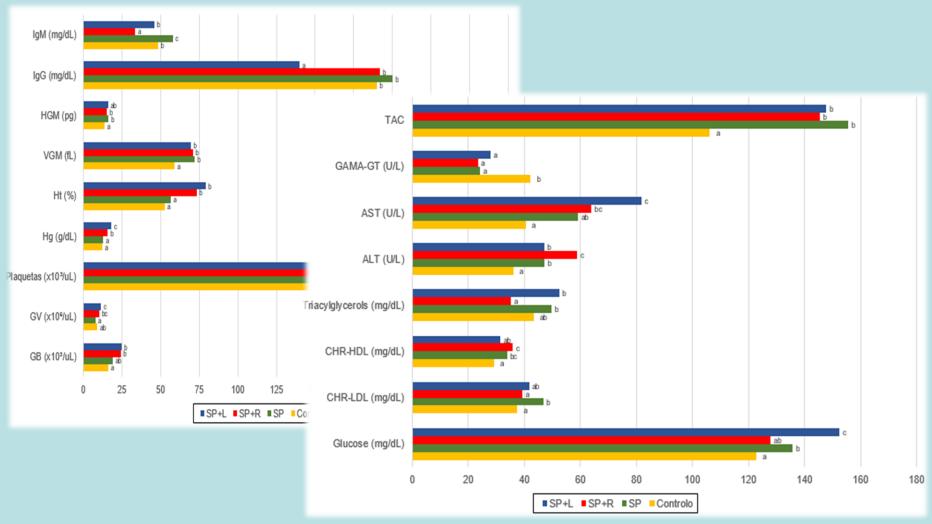
10% Spirulina (SP)

SP + 0.01% Lysozyme (SP+L)

40 male post-weaned piglets (n=10)

Experiment lasted 28 days

Spirulina in piglets: growth performance


	Diets									
Item	Control	SP	SP+R	SP+L	SEM	P value				
Live performance										
Initial weight (kg)	12.1	11.7	12.1	11.9	0.15	0.808				
Final weight (kg)	31.0ª	28.3 ^b	28.4 ^b	27.8 ^b	0.40	0.009				
ADFI (g)1	997	960	943	960	12.8	0.521				
ADG (g) ²	677ª	593⁵ 1.62⁵	582 [⊾]	567⊳	12.4	0.001 <0.001				
FCR ³	1.48ª		1.62⁵	1.69 ^b	0.023					
Faecal score⁴	0.070	0.223	0.145	0.198	0.032	0.355				
TTAD (%)⁵										
DM	79.6ª	77.6 ^b	77.3 ^b	79.5ª	0.35	0.014				
ОМ	83.1ª	81.3 ^{bc}	81.1°	82.9ªb	0.32	0.031				
Ash	42.3ª	34.4 ^b	34.1 ^b	43.8ª	1.14	<0.001	Martins e			
CP	80.6ª	73.2 ^b	73.4 ^b	75.4 ^b	0.81	<0.001	Submit			
CF	55.6ª	57.8ªb	60.4 ^{bc}	62.8°	0.78	<0.001				
NDF	39.8	39.0	37.5	45.4	1.17	0.071				
ADF	23.0ª	28.9 ^{sb}	31.1ªb	37.3⁵	1.86	0.039				
Relative length of gastrointestinal tract (m/kg)										
Small intestine	0.466ª	0.487 ^{ab}	0.532 ^{bc}	0.541°	0.0101	0.007				
Large intestine	0.110	0.122	0.128	0.121	0.0032	0.154				
Content viscosity (cP)	Content viscosity (cP)									
Duodenum + jejunum	3.16ª	4.96 ^b	5.32 ^b	6.11 ^b	0.320	0.005				
lleum	5.88ª	8.97 ^b	7.77 ^{ab}	8.63⁵	0.403	0.023				

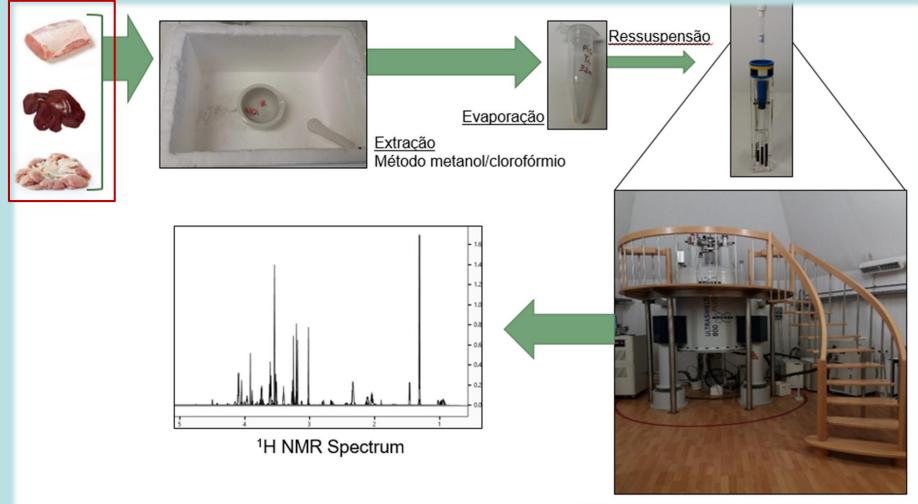
et al., ted

Spirulina impaired growth performance, protein digestibility and digesta viscosity

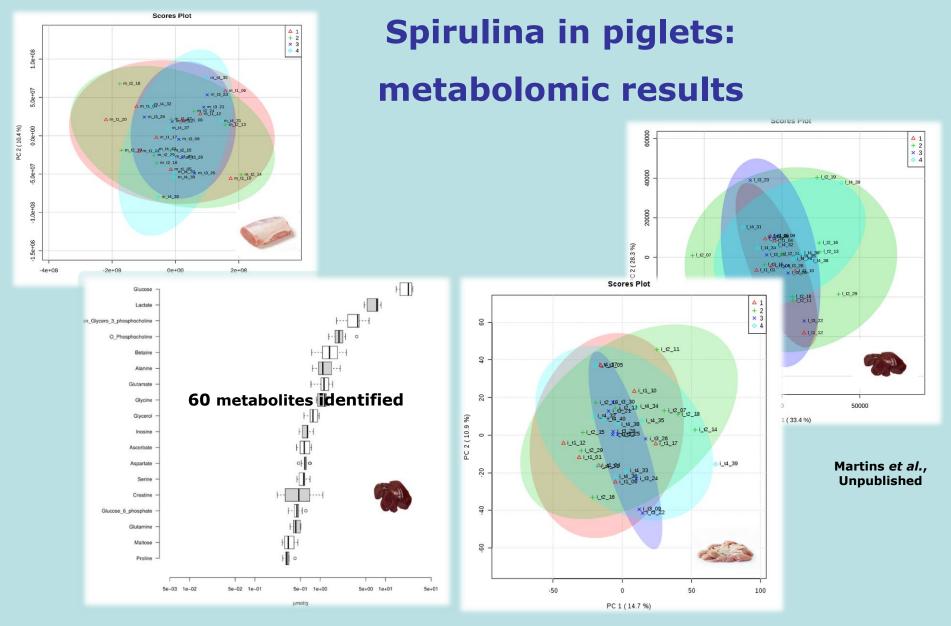
Lysozyme improved fibre digestibility and aggravated performance effects of SP

Spirulina in piglets: health status

Piglets remained healthy during the entire trial

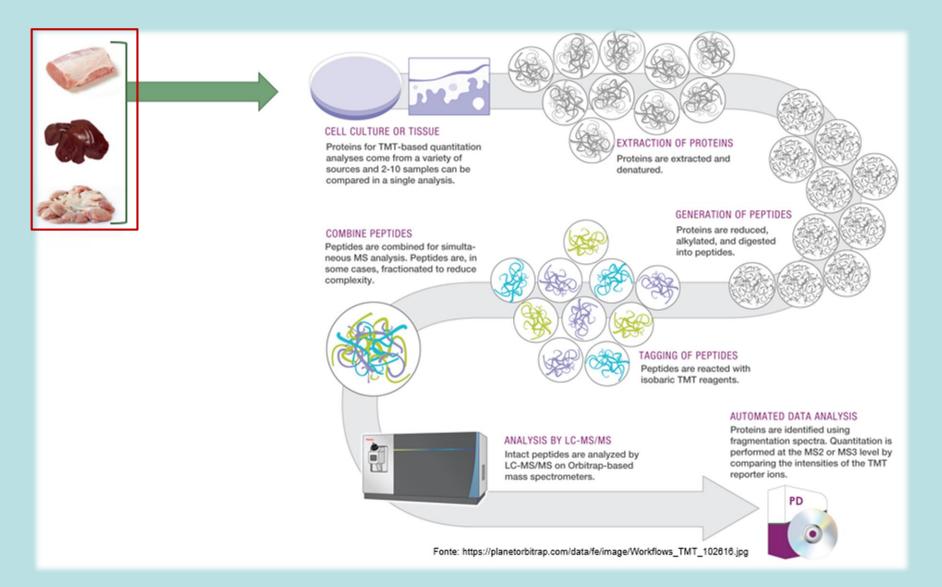

Martins et al., Submitted

Spirulina in piglets: meat quality

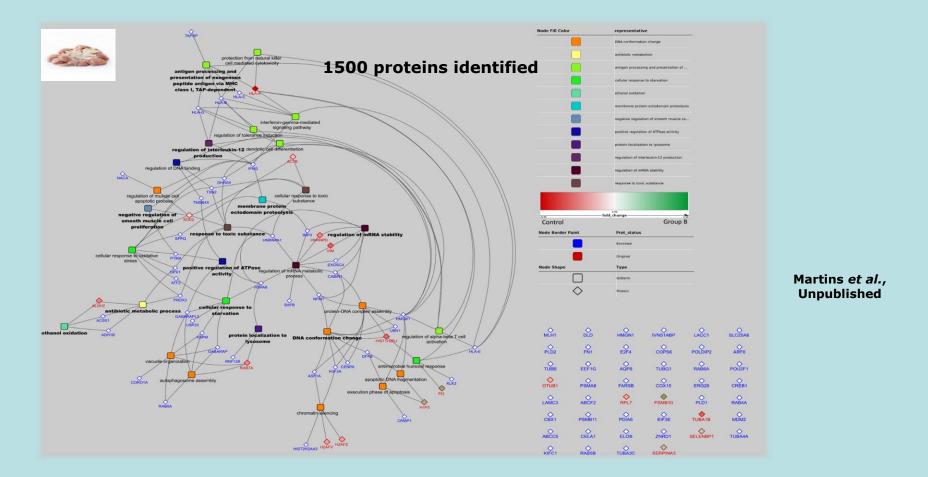

			Diets						
Item	Contro	I SF		SP+R	SP)+L	SEM	P value	
pH 24 h	5.55	5.5	0	5.52	5.	55	0.062	0.902	
Colour									
L*	50.4ª	51.5	D ^{ab}	53.3⁵	51.	9 ^{ab}	0.70	0.022	
a*	7.08ª	7.68	Bap 6	6.99ªb	8.1	17⊳	0.263	0.008	
b*	0.93ª	1.95	D ^{ab}	2.29 ^b	2.3	38⊳	0.264	0.001	
TBARS ¹									
Day 0	0.233	0.23	33 (0.224	0.2	245	0.0109	0.588	
Day 3	0.350ª	0.81	4 ^b 0	.363ªb	0.54	46 ^{ab}	0.1237	0.041	
Day 7	0.590	1.96	68 1	880.1	2.0	91	0.4292	0.078	Martins et al.,
Pigments									Submitted
Chlorophyll-a1		0.221ª	0.346 ^{ab}	0.29	1 ^{ab}	0.397	0.0447	0.045	
Chlorophyll-b ²		0.328ª	0.508ªb	0.47	5 ^{ab}	0.653⁵	0.0762	0.035	
Total chlorophyl	lls ³	0.549ª	0.853ªb	0.76	6 ^{ab}	1.051 ^b	0.1196	0.037	
Total carotenoid	ls⁴	0.092ª	0.146 ^b	0.15	0ь	0.153 ^b	0.0143	0.013	
Total chlorophyl	lls and	0.641ª	0.999ªb	0.91	6 ^{ab}	1.204 ^b	0.1316	0.033	
total carotenoids	S ⁵								
Diterpene profile									
β-Carotene		0.081	0.081	0.07	77	0.082	0.0034	0.668	
a-Tocopherol		0.498	0.389	0.50)4	0.366	0.0479	0.090	
y-Tocopherol		0.030	0.030	0.03	31	0.027	0.0021	0.522	

Spirulina and enzymes did not affect meat quality

Spirulina in piglets: metabolomic analysis



800 MHz Bruker Advance II+ spectrometer


PCA analysis did not show differences among diets

Spirulina in piglets: proteomic analysis

JAMP, 32

Spirulina in piglets: proteomic results

Liver: SP increased catabolism of carbohydrates and fatty acid oxydation

<u>Gut</u>: SP improved imune status and oxydative stress

Spirulina in piglets: conclusions

- Incorporation of 10% Spirulina impared piglets performance
- Mediated by increased digesta viscosity and lower protein digestibility
- Due to the resistance of microalga liberated proteins to endogenous peptidases
- The assessment of exogenous peptidases are ongoing
- Lysozyme was effective in the degradation of SP cell wall
- Commercial carbohydrate-degrading enzymes are not effective in the degradation of SP cell wall
- Meat quality and animal health was not affected by SP or enzymes
- SP improved gut imune status and oxydative stress

Similar Chlorella trials are ongoing

- Poultry experiment (trial done, samples under analysis)
- Piglets digestibility experiment (samples under analysis)
- Piglets performance experiment (will start in December)
- Finishig pigs experiment in a farm (trial ongoing)
- Finishing pigs experiment (will start in September)

General conclusions and challenges

- MA have interesting properties for animal feeding:
 Chemical composition is similar to conventional crops
 Could improve meat quality
 Could help to balance food-feed-biofuel industries
 Is a sustainable marine resource
- However, their use in animal feeding is currently limited
- Challenge of the nutrients bioavailability (monogastrics):
 Strategies to valorize their nutritional value are needed
 CAZymes could help in the increase of nutrientes bioavailability
 MA proteins are resistant to endogenous peptidases
 The use of exogenous peptidases seems to be necessary
- Challenge of the cost-effective use by the feed industry:
 MA cultivation technology is inefficient
 Reduction of production costs

Acknowledgements

Grant UID/CVT/2013/276

instituto nacional de investigação agrária e veterinária

JAMP, 37

PORTUGAL 2020 UNIÃO EUROPEIA Fundos Europeus Estruturais e de Investimento

Grant P2020 08/SI/2015/3399

FCT Fundação para a Ciência e a Tecnologia

Grant PTDC/CVT-NUT/5931/2014