THE EFFECTS OF SCHIZOCHYTRIUM SP. LIPID EXTRACT OR FISH OIL ON LAMB MEAT FATTY ACIDS

Francisco, A., Alves, S.P., Santos Silva, J., Bessa, R.J.B.

OBJECTIVES

Supplying n-3 long chain PUFA (EPA & DHA) to ruminants can be useful to:

- Disturb the rumen biohydrogenation → Increase vaccenic acid (18:1 *trans*-11) and rumenic acid (CLA)
- Increase the n-3 LC PUFA of meat/milk

OBJECTIVES

Microalgae derived n-3 long chain PUFA are an alternative source to fish oil

.....and compared to fish oil, has been suggested that:

- Microalgae n-3 LC PUFA might be less hydrogenated in the rumen (Bessa et al. 2015)
- Microalgae n-3 LC PUFA might have higher deposition in neutral lipids (TAG) in muscle and adipose tissue (Cooper et al. 2004).

MATERIAL & METHODS - ANIMALS

- 36 ram lambs
 - Merino Branco Breed; ≈ 60 days of age;
 - Weaned and transported to INIAV Santarém facilities
 - Randomly allocated to 9 pens.
 - Dewormed (Ivomec®, Merial)
 - Vaccinated against enterotoxaemia (Miloxan®, Merial)
- Duration of the experiment
 - l week of adaptation
 - 6 weeks on feed until slaughter.

MATERIAL & METHODS - DIETS

- Treatments (Diets)
 - All diets were contained:
 - 70 % DM of dehydrated alfalfa
 - $\approx 11 \%$ DM of wheat
 - $\approx 11 \%$ DM of Soybean meal
 - \approx 6 % DM of a lipid source
 - 3 Experimental diets (S, FS, TS)
 - S (sunflower) 6% DM of Sunflower oil
 - FS (fish oil + sunflower) 2% DM of fish oil + 4% DM of Sunflower oil
 - TS (TREVERA® + sunflower) 3.53 % DM of fish oil + 4% DM of Sunflower oil

LIPID SOURCES

- Fish oil: Sardine oil containing both EPA(20:5n-3), DPA (22:5n-3) and DHA (22:6n-3)
- **TREVERA**TM, **Novus International**: DHA rich lipid extract (*powder*) from Schizochytrium sp, rich in DHA (>15% DM)

COMPOSITION OF DIETS

	S	FS	TS
Dry matter (g/kg)	898	902	898
Crude protein (g/kg DM)	174	170	164
Crude fiber (g/kg DM)	214	199	208
Starch (g/kg DM)	104	142	120
Ether extract (g/kg DM)	81	79	81
n-3 LC-PUFA (% FA)			
20:5 n-3	-	1.04	0.40
22:5 n-3	_	0.33	3.46
22:6 n-3	-	0.42	7.27

MATERIAL & METHODS

- Growth and feed intake
 - Animals weighted weekly
 - Feed intake/pen monitored daily
- Post-mortem measurements
 - Carcass traits
 - Meat quality (colour, shear force)
 - Meat lipids fatty acid (FA) composition

MATERIAL & METHODS

- Growth and feed intake
 - Animals weighted weekly
 - Feed intake/pen monitored daily
- Post-mortem measurements
 - Carcass traits
 - Meat quality (pH, colour, shear force)
 - Meat lipids fatty acid (FA) composition
- Statistical analysis
 - Pen as experimental unit
 - Lambs as subsampling within the pen

MATERIAL & METHODS - LIPID ANALYSIS

Muscle samples

Lipid extraction

DCM:methanol (2:1, v/v)

Lipid fractionation (SPE):

Neutral lipids
Polar lipids

Preparation of Fatty acid methyl esters

(NaOMe in methanol and HCL in methanol)

Analysis by GC-FID:

SP-2560 (100-m) GC column

Dry matter intake (g/d)

Average daily gain (g/d)

Slaughter weight and hot carcass weight (kg)

Hot carcass weight

Live slaughter weight

Perirenal fat (g)

Perirenal fat (g)

Adjusted for carcass weight

Subcutaneous fat and dissectable carcass fat (kg)

RESULI'S — MEAT QUALITY

Intramuscular fat (mg/g muscle)

P = 0.22

RESULTS — MEAT QUALITY

LD muscle color (L*, a*, b*)

RESULTS — MEAT QUALITY

Subcutaneous fat color (L*, a*, b*)

RESULTS - MEAT SENSORY EVALUATION

Tenderness, juiceness and off-flavor (8 point sensory scale)

Polar & Neutral lipids fatty acid profile (% FA)

Polar lipids

Neutral lipids

N-3 PUFA: Muscle (PL and NL) and subcutaneous fat (SCF)

N-3 PUFA Neutral muscle lipids vs. SCF

Subcutaneous fat:

18:0 and Biohydrogenation Intermediates (BI)

FS

TS

Subcutaneous fat: BI 18:1 isomers

Subcutaneous fat:

CLA (18:2 cis-9, trans-11)

CONCLUSIONS

Compared to fish oil Schizochytrium lipid extract was:

- similar effects in promoting the accumulation 18:1 trans-11.
 - Disruption of the last reductive step of rumen biohydrogenation
- But less effective in increasing CLA ?!

CONCLUSIONS

Compared to fish oil Schizochytrium lipid extract was:

- less effective in increasing n-3 LC PUFA in meat phospholipids
 - eventual oxidative damage of membrane PUFA
- more effective in increasing n-3 LC PUFA in meat neutral lipids and adipose tissue. ?!!!
 - potential to deposit more n-3 LC PUFA outside of the membrane phospholipid pool

CONCLUSIONS

However, Schizochytrium lipid extract severely depress:

- the feed intake

- growth of lambs

Thank you for your attention

