Animal Farming for a Healthy World

GHENT - BELGIUM

26 - 30 AUGUST 2019

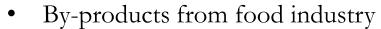
In vitro gas production of 8 selected seaweeds as indicator for rate and extent of rumen fermentation

Perricone, V.^{1,2}, Muizelaar, W.², Van Duinkerken, G.², Pellikaan, W.³, Cone, J.³

¹University of Milan, Department of Health, Animal Science and Food Safety "Carlo Cantoni" (VESPA)

²Wageningen Livestock Research, the Netherlands

³Wageningen University & Research, Animal Nutrition Group, the Netherlands



Land degradation

Enlargement of feed resources

Identification of novel feeds
Development of new additives

- Single-cell protein (bacteria, yeast, fungi, microalgae)
- Plant extracts
- Aquatic biomass (seaweed, duckweed)
- •

Food-fuel-feed competition

Climate change

Phaeophyceae

- Shallow waters or on shoreline rocks
- Very flexible steams
- Can reach large size
- Easy to harvest
- Low medium CP content
- Rich in minerals
- Cell wall: cellulose, alginic acid and fucoidans
- Reserve carbohydrate: laminarin
- Rich in iodine

Rhodophyceae

- Bright pink colour caused by biloprotein pigments
- From low tide marks to 100 m depth
- Some of them largely used as food (e.g. nori for sushi)
- Rich in protein
- Cell wall: carragenans and agars
- Reserve polysaccharide: floridean starch
- Limited amount of iodine

Clorophyceae

- Green colour due to chlorophyll
- Shallow waters and tide pools (abundant light)
- Up to 45 cm
- Fast growing
- Good protein content
- Low energy content
- High insoluble dietary fibre (glucans)


Aim of the experiment

Screening evaluation of 8 North West European seaweed species as alternative feed for dairy cattle, according to *in vitro* total gas production (TGP) and CH₄ production

Materials and methods

<u>Seaweeds</u>

- Collection season:
 - Spring 2018 (UNP, LAD, SAL, PUM)
 - Autumn 2018 (ASN, FUS, ULL, PAM)

Wild

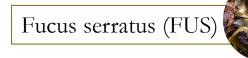
Drying method: dehumidifier (<70°C)

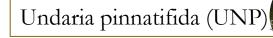
Porphyra umbilicalis (PUM)

Palmaria palmata (PAP)

Laminaria digitata (LAD)

Ascophyllum nodosum (ASN)


Saccharina latissima (SAL)

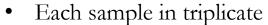


In vitro test – total gas and methane production

Rumen fluid from 2 different lactating
Holstein-Friesian cows
(fed grass and corn silage diet)

Τ,

Buffer solution


+

Sample (0,5 g)

72 h in shaking water baths at 39 °C, with individual bottles connected to an automated gas production measuring system

• Control: grass silage

Gas samples (10 µL) at 0, 2, 4, 6, 8, 10, 12, 24, 30, 36, 48, 56, 72 h from the head space of the fermentation bottles using a gas-tight syringe and analysed for CH₄ by gas chromatography

Pellikaan et al., 2011

All seaweeds were analysed for: DM, Ash, CP, EE, NDF, starch, iodine and heavy metal content, total phenolic content, fatty acids composition

Statistical analysis

Cumulative gas and CH₄ production curves were fitted with a monophasic Michaelis–Menten equation (Groot et al., 1996)

$$OMCV = \sum_{i=1}^{n} \frac{A_i}{1 + (B_i/t)^{C_i}}$$

Where:

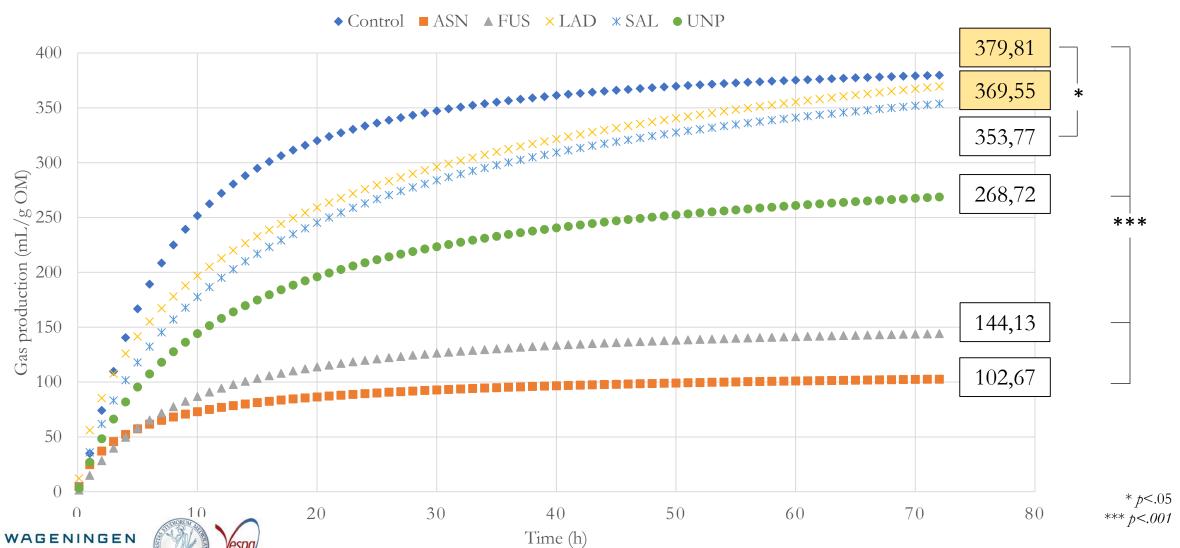
OMCV = gas or CH_4 production (ml/g of incubated OM);

 A_i = asymptotic gas production (ml/g of incubated OM); B_i = time at which half of the asymptotic gas or CH₄ production

 B_i = time at which half of the asymptotic gas or CH₄ production has been reached ($t_{1/2}$, h);

 C_i = the sharpness of the switching characteristics of the profile; t = time (h)

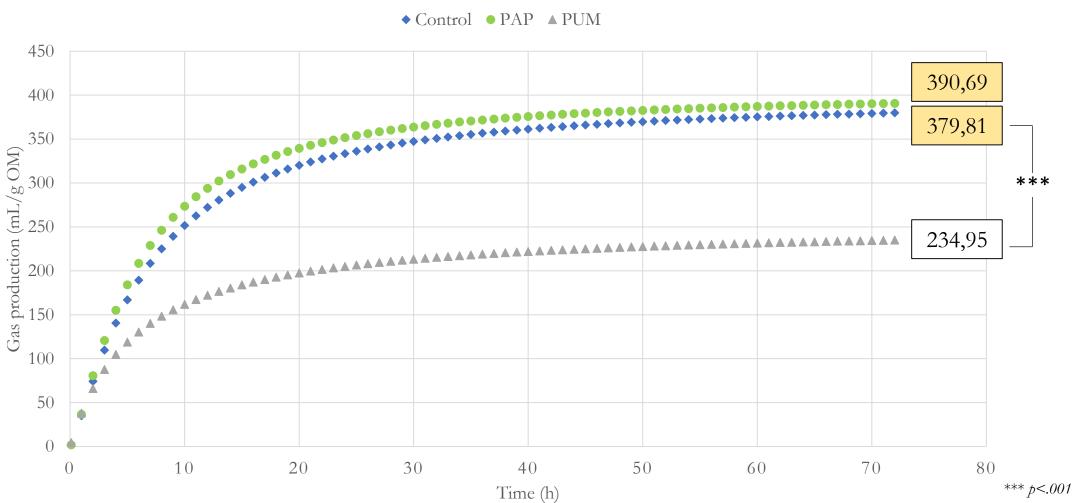
Total gas production and CH₄ production at 72 h were analysed using a GLM procedure in SAS 9.2



Results

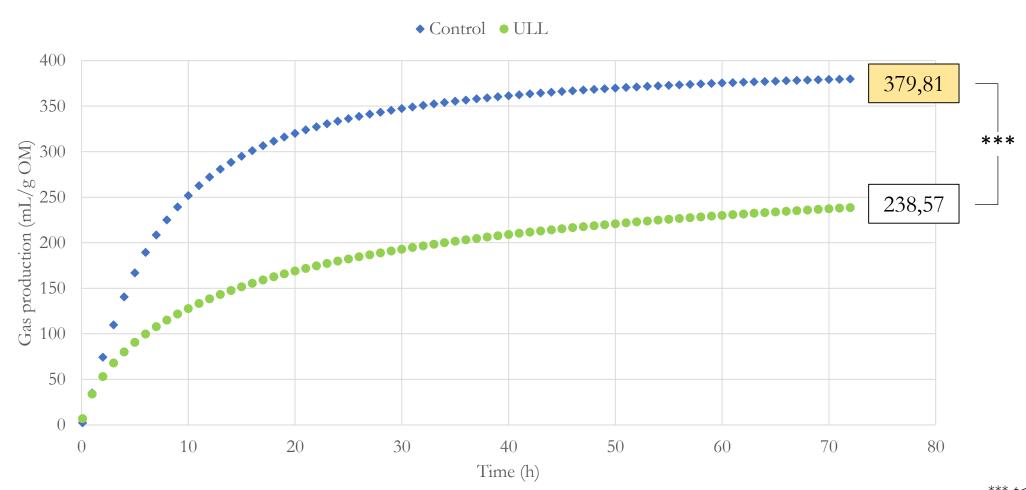
<u>Total gas production – brown species</u>

70^{th} EAAP meeting, 26^{th} – 29^{th} August 2019, Ghent


		***	***		*	***
		A. nodosum	F. serratus	L. digitata	S. latissima	U. pinnatifida
$\overline{\mathrm{DM}\left(\mathrm{g/kg}\right)}$	g/kg	890.9	877.3	881.5	893.3	917.7
ASH	g/kg DM	187.3	207.3	231.5	299.1	385.5
NDF		168.6	162.1	132.2	161.2	155.1
Crude Fibre		61.6	58.1	63.8	76.2	49.0
Crude Fat		34.9	32.7	7.4	4.3	5.6
STARCH		3.5	6.6	1.1	1.9	1.3
N		10.6	11.4	15.3	25.9	42.1
Protein (N*6.25)		66.4	71.3	95.7	162.0	263.3
Protein (N*4.75)		50.4	54.2	72.7	123.2	200.1
I	g/kg DM	984.7	2570.0	58.2	45.8	26.6
Cu		<5	<5	<5	5.9	5.8
As		34.2	94.8	6.6	9.2	33.3
Cd		0.2	0.1	0.3	0.2	0.2
Saturated FA	g/100g	42.0	30.0	12.0	45.0	67.0
Unsaturated FA		187.0	74.0	4.0	26.0	123.0
Monounsaturated FA		111.0	23.0	3.0	16.0	23.0
PUFA		76.0	51.0	1.0	10.0	100.0
Total phenolic content	GA/g	28.68	18.82	0.47	0.69	1.27

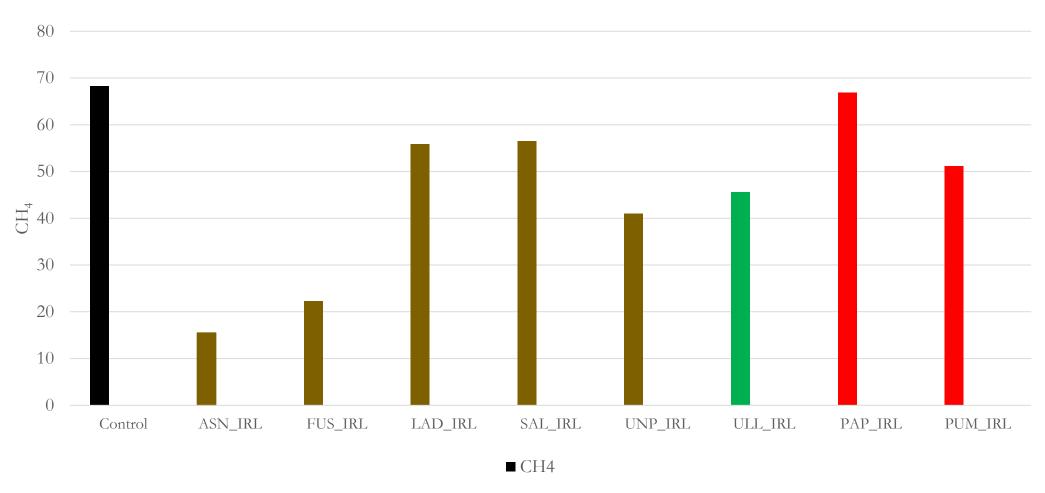
Total gas production – red species

		P. palmata	P. umbilicalis
DM (g/kg)	g/kg	926.5	861.4
ASH	g/kg DM	302.6	196.3
NDF		252.9	302.6
Crude Fibre		36.7	27.9
Crude Fat		7.9	3.4
STARCH		16.0	89.6
N		31.5	36.0
Protein (N*6.25)		196.8	225.0
Protein (N*4.75)		149.5	171.0
I	g/kg DM	181.7	_65.4
Cu		<5	34.2
As		11.7	12.1
Cd		0.1	0.0
Saturated FA	g/100g	53.0	60.0
Unsaturated FA		108.0	21.0
Monounsaturated FA		11.0	14.0
PUFA		97.0	7.0
Total phenolic content	GA/g	1.67	3.36

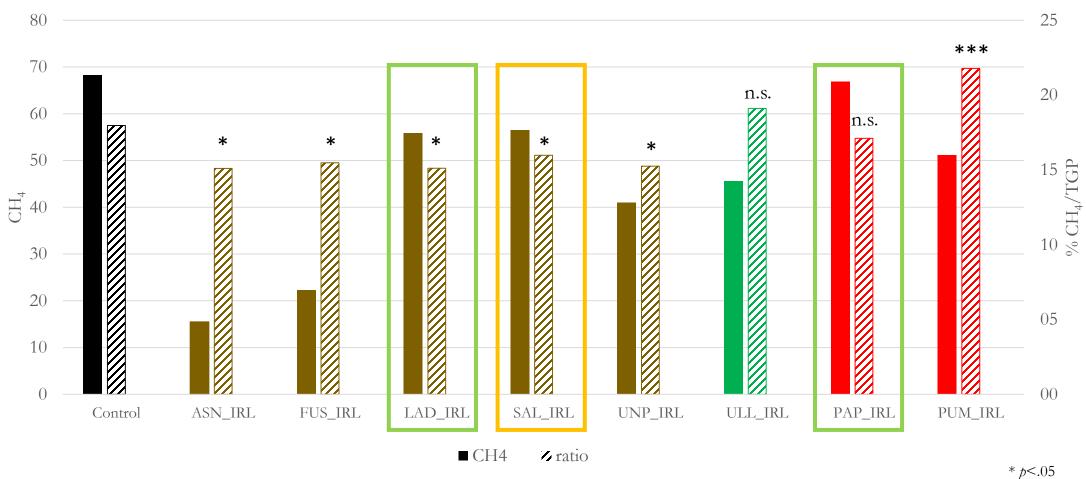

Muizelaar et al., not published

Total gas production – green species

		U. lactuca
DM (g/kg)	g/kg	846.2
ASH	g/kg DM	387.7
NDF		237.5
Crude Fibre		70.6
Crude Fat		3.5
STARCH		25.9
N		21.1
Protein (N*6.25)		132.1
Protein (N*4.75)		100.4
Ι	g/kg DM	2676.7
Cu		<5
As		15.1
Cd		0.6
Saturated FA	g/100g	57.0
Unsaturated FA		14.0
Monounsaturated FA		9.0
PUFA		5.0
Total phenolic content	GA/g	1.16
<u></u>	_	


Muizelaar et al., not published

CH₄ total production and CH₄ % per TGP



CH₄ total production and CH₄ % per TGP

Conclusion and future perspective

- According to TGP and CH₄ production, *P. palmata*, *S. latissima* and *L. digitata* might be considered as potential (partial) substitute of grass silage
- Further investigation are required to assess their validity as potential replacer (OM degradability, VFA, amino acid composition, digestibility, ...)
- Additional test with rumen fluid form cows familiar with seaweeds
- Evaluation of potential effect on animal health
- Evaluation of sustainability of their cultivation

Animal Farming for a Healthy World

GHENT - BELGIUM

26 - 30 AUGUST 2019

Contact details

vera.perricone@wur.nl vera.Perricone@unimi.it wouter.muizelaar@wur.nl gert.vanduinkerken@wur.nl

Species	Collecting location	Extraction method (% MeOH)	Total phenolic contented (mg GAE/g)	nt
Ascophyllum nodosum	Ireland	60%	4.5 *	
Fucus serratu	anuela Australia		SCI	
Laminaria di	earch Article :16 June 2017 Revised: 6 November 2017 A	Accepted article published: 17 December 2017	Published online in Wiley Online Library: 14 February 2018	I'
I aminaria di	onlinelibrary.com) DOI 10.1002/jsfa.8842	Accepted article published: 17 December 2017	Published online in Wiley Online Library: 14 February 2016	
Saccharina la	minaria digitata	nhlorotanning	decrease	
$C 1 \cdot 1$	otein degradatio			*mg GAE/g dw
	iring <i>in vitro</i> rum			erali'c Mekini'cg et al., 201
Ascophyllum Ann	ne M Vissers, a Wilbert F P	ellikaan, ^{b*} o Anouk Bou	whuis, ^a	
Fucus serratu Jean	n-Paul Vincken, ^a Harry G	ruppen ^a and Wouter H	Hendriks ^b o	
Laminaria digitata	Ireland	75%	0.47	
Saccharina latissima	Ireland	75%	0.69	Muizelaar et al., not published
Undaria pinnatifida	Netherlands	75%	1.27	18

Table 1 Total arsenic (Λs_T) and inorganic arsenic (Λs_1) contents (mg kg $^{-1}$ DW) and $\Lambda s_1/\Lambda s_T$ ratios in red (Rhodophyta), brown (Phaeophyta) and green algae (Chlorophyta).

Phylum		As _T	As _i	As _i /As _T (%)
Rhodophyta	Range	0.13-50	0.048-3.0	0.2-61.54
	Average	$13.71 \pm 9.79^{n} (n = 92)$	$0.36 \pm 0.32^{a} (n = 44)$	5.97 ± 12.71" (n = 44)
Phaeophyta	Range	1.89-245.19	0.04-115.56	0.08-85.29
	Average	$50.36 \pm 44.60^{b} (n = 154)$	$16.65 \pm 29.32^{b} (n = 65)$	$21.59 \pm 28.54^{b} (n = 65)$
Chlorophyta	Range	0.59-28.53	0.02-0.40	0.48-16.09
	Average	$5.59 \pm 5.08^{a} (n = 36)$	$0.20 \pm 0.13^{a} (n - 14)$	$5.28 \pm 5.78^{a} (n - 14)$

^{**} Data shown are the means ± standard deviations from data collected from published studies available up to June 2017. Letters in superscript indicate significant differences between groups at the P ≤ .05 level.

Ma et al., 2018

Table 2
Seaweed species containing high level of total arsenic (As_T).

Species	Phylum	Zone	*As _T	Methodology	Reference
Fucus vesiculosis	Phaeophyta	UK	140	HPLC-ICP-MS	Pedersen and Francesconi, 2000
Laminaria spp.	Phaeophyta	Brittany	134	HPLC-ICP-MS	McSheehy and Szpunar, 2000
L. digitata	Phaeophyta	France	126 ± 5	HPLC-ICP-MS	Garcia-Salgado et al., 2012
L. digitata	Phaeophyta	USA	106.73	ICP-MS	Taylor and Jackson, 2016

Ma et al., 2018

	CP (g/kg DM)		
	N*6,25	N*4,75	
Grass silage (control)	150,4		
L. digitata	95 , 7	72,7	
P. palmata	196,8	149,5	
S. latissima	162.0	123,2	

Muizelaar et al., not published

