

N° 31504

# Barymetric predictions of body weight in adult goats

Viel J.<sup>1</sup>, Ringuet A.<sup>1</sup>, Mauclert J.<sup>1</sup>, Laclef E.<sup>1</sup>, Jurjanz S.<sup>1, 2</sup>

<sup>1</sup> option Sustainable Development of Agriculture (DEFI), ENSAIA, Université de Lorraine, Vandoeuvre, France. <sup>2</sup> UR AFPA, Université de Lorraine-INRA, 54505 Vandoeuvre, France

\* correspondant : juliette.viel@univ-lorraine.fr

#### Context

Body weight of lifestock is a key parameter to determine actions of herd management

Reproduction Feeding Sales

- However, measuring weight with scales can be difficult to implement (especially when animals are grazing on plots with a difficult access)
- Barymetric methods represent an alternative as BW would be estimated from body measurements of animals
- If such methods are quite developed for cattle and horses, there is a lack of recognized formula for goat

 $\rightarrow$  Establishing a barymetric model for goat is a real stake as many goat farm are extensive rearing system

# Material and methods : Animal sampling protocol

- Animals came from our experimental schoolfarm « La Bouzule » near Nancy (France)
- The herd is composed of 100 Alpine goats (goats with a strong body development)
- Animals were chosen randomly in the herd but a large scale of weight was demanded (Sample from 50 -100kg)

 $\rightarrow$  28 adult dairy goats were used for the study :

16 primiparous & 12 multiparous

# Material and methods : Pre-experimentation and repeatability

- Goal of the pre-experimentation :
  - define BW measurements used
  - caracterize variability between operators
- According to our pre-experimentation, 3 BW measurements were used:
  - height at withers (**HW**; height of the animal from the ground to withers taken at the front legs),
  - chest circumference **CC** (circumference of the animal just behind the front legs)
  - length of back LB (distance between the shoulder blades and the base of the tail)

## Material and methods : Measurement protocol

- 3 BW measurements : Height at Withers, Chest Circumference, Length of Back
- 2 operators : one holding, one measuring
- Every goat was weighted with a 100g precision scale
- A particular attention was paid on goat position :



## Results : Correlation between measured parameters

Pearson Test : Highlighting the level of correlation between parameters

|               | LB        | CC        | HW        | AC   |
|---------------|-----------|-----------|-----------|------|
| LB            | 1         | 0.82      | 0.22      | 0.86 |
| CC            | 0.00      | 1.00      | 0.19      | 0.94 |
| HW            | Pvalue>5% | Pvalue>5% | 1         | 0.29 |
| Actual weight | 0.00      | 0.00      | Pvalue>5% | 1    |

**Conclusion** : 2 measurements seem to be relevant :

 $\rightarrow$  CC (high correlation)

 $\rightarrow$  LB (pretty redundant with CC)

## Results : Body weight prediction using chest circumference



BW = 2.02 CC - 121.55

 $R^2 = 0.88$ 

Standard deviation = 4.34

→ Only one parameter to measure

 $\rightarrow$  Good repeatability of the measure

 $\rightarrow$  Really simple to use and time-saving model

## Results : Body weight prediction using chest circumference and length of back

| Model                          | R²   | Standard deviation |  |
|--------------------------------|------|--------------------|--|
| BW = 2,02 TP - 121,55          | 0,88 | 4,34               |  |
| BW = 1.53 CC + 0.83 LB- 137.40 | 0.91 | 3.91               |  |

 $\rightarrow$  Less uncertainty than the previous model

 $\rightarrow$  A little more difficult to use

 $\rightarrow$  Good repeatability of measurements

# Results : Impact of parity on the prediction



The number of parity has an impact on BW.

However, model is not affected.

→ Model is quite robust to
"support" age difference
between primiparous and
multiparous

#### **Final choice**

- A simple regression seems to be enough
- Time spent on measuring LB is not justified as it slightly improve the result.



Predicted weight

### Discussion

- The uncertainty of 8.5kg (12% of BW) is a little higher than what it found on equine and bovine models (from 3 to 9% of BW)
- Preciseness of the results could not be improved with a larger sample of goat
- The efficiency of the model should be tested on other animals (less productive breeds,...) but maybe coefficients will be different and parameters unchanged
- The relevance of others parameters should be tested for other animals (volume parameter for growing animals, ...)

#### Conclusion

 $\rightarrow$  A good model :

 $\rightarrow$  really simple and quick to use

 $\rightarrow$  just one parameter to measure

 $\rightarrow$  suitable for a wide range of weights and breeds

 $\rightarrow$  Lack of precision but not so different from the other models (equine and bovine models)

 $\rightarrow$  A good tool for farmers with no scale or when conditions are not easy (pasture, fields with limited access)

### Thank you for your attention