

β-Lactoglobulin, Kappa Casein, and Prolactin Genes Effects on Milk Production

Khaleel I. Z. Jawasreh & Ahmad H. Almareen

Jordan University of Science and Technology, Jordan and National Agricultural Research Center

Introduction

- The dairy industry is a crucial cog in the agricultural economy of many countries.
- Therefore, milk yield and its components are among the major goals targeted by animal geneticists.
- Awassi is the most common breed of sheep in Middle East countries where its products,

Introduction

- **Beta-lactoglobulin,** coded by the *β-LG* gene, is synthesized by the secreting cells of the mammary gland.
- *β-LG* is the primary whey protein in ruminant's milk and accounts for approximately 17 to 22% of total milk proteins.
- The β-LG gene is located on ovine chromosome 3, and exon number 2 of β-LG revealed three allelic polymorphisms (A, B and C) based on different amino acid changes.
- The alleles A and B (Tyr/His) differ at the amino acid position and the genetic variant C differs from variant A by an amino acid exchange at position 148 (Arg/Gln) (GenBank accession No. X12817).
- The most common genetic variants detected in all studied sheep breeds are A and B, while the variant C is regarded as rare,

Introd.

- Prolactin, coded by the *PRL* gene, is a lactogenic hormone found in many species.
- The *PRL* gene plays a key role in the development of the mammary gland and milk secretion; its depletion in sheep provokes a severe reduction in milk production, suggesting that *PRL* is a functional candidate gene contributing to variations in milk production.
- The *PRL* gene is found in a region of the ovine chromosome 20 with putative quantitative trait locus (QTL) for milk yield and composition.
- Thus, PRL is primarily responsible for the synthesis of fat, proteins, and all other major components of milk .

Introd.

- The four caseins (αS1-, αS2-, β- and κ-casein) are the major proteins in sheep milk, accounting for about 80% of total protein in milk.
- Among the 4 caseins, κ-casein (CSN3) accounts for approximately 15% of total casein,
- and thus represents one of the most important proteins due to its essential role in micelle formation and stabilization,
- determines the manufacturing properties of milk

Objectives

- The present study screens some Awassi genetic loci for possible variants in the *B-LG*, *PRL*, and *CSN3* genes
- and establishes their frequency in commercial Awassi sheep flocks
- The ultimate objective of investigating the effect of these genotypes and their interaction on milk production and composition traits.

Materials and Methods

- Animal and Sample Collection
- A participatory animal-breeding program was performed in the South, North, and middle of Jordan.
- ✓ .A total number of 928 ewes that belong to 9 flocks (three in each region) were targeted through the participatory animal-breeding program.
- Blood samples for DNA harvesting were carefully collected from the jugular vein of the Awassi ewes (2 to 6 years old) that were born to 31 sires using vacuum tubes and stored at -20.

Milk Samples and Analysis

- Milk was collected manually (hand milking) by skilled workers.
- Milk samples were taken also biweekly for milk component analysis

Results

Genomic DNA Extraction and Polymerase

Table Primer information and restriction information for genes of interest.

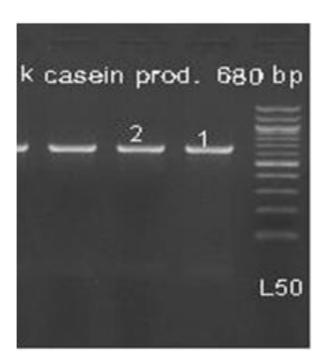
Gene		Primers (5'→3')	T M (°C)	PC R Produ ct (bp)	RE	
Beta-	F	CTCTTTGGGTTCAGTGTGAGTCT TG				
lactoglobuli n (β-LG)	R	CACCATTTCTGCAGCAGGATCTC	58	301	RsaI	
Prolactin	F	ACCTCTCCTCGGAAATGTTCA	56	120	HaeIII	
(PRL)	R	GGGACACTGAAGGACCAGAA		9	1100111	
Kappa Casein	F	CTGGGTTCACTATTCCCAATG	57	680	Sequenci	
(CSN3)	R	TTGCTCATTTACCTGCGTTG		000	⁻ ng	

Table Descriptive statistics of milkproduction and milk composition traits.



Descriptive statistics of milk production and milk composition traits.

Milk Trait	No. Records	Mean	SE	CV (%)
Milk production (Kg)				
TMY	391	96.8	2.60	53.0
TDM	391	0.882	0.02	45.0
Milk composition				
Fat%	917	5.80	0.05	25.7
SNF%	986	9.74	0.03	8.30
Protein%	986	3.90	0.02	13.0
Lactose%	986	5.10	0.02	13.9
Density g/cm ²	986	34.3	0.10	9.4


Genotyping

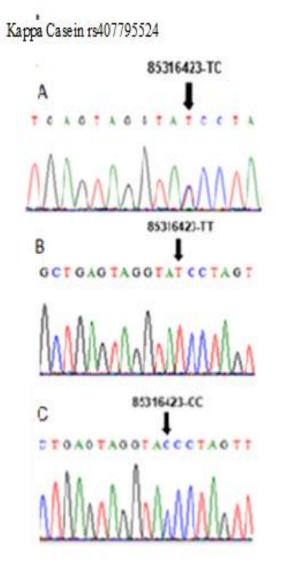
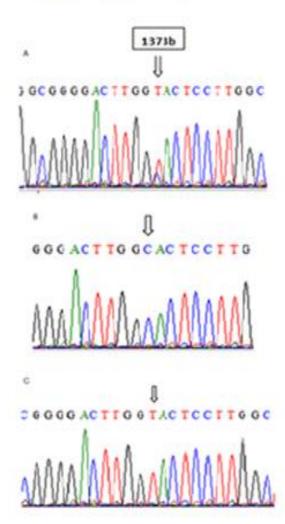


Figure 1. PCR-RFLP results for *B-LG* (**A**) and prolactin (**B**) genes using Rsal and HaellI restriction enzyme respectively on 3% agarose gel


sequencing results

II. β-Lactoglobulin Rs430610497

Allele and genotype Frequencies

Gene ¹	Genot ype	Observ ed Numbe r	Expected Number	Genot ype Freque ncy	Allele	Allele Frequ ency	Value of x ² Test
	AA	27	28.7	0.17	А	0.42	0.29 ^{ns}
<i>β-LG</i> (n = 159)	AB	81	77.7	0.51	В	0.58	
	BB	51	52.7	0.32			
PRL (n = 158)	AA	115	107	0.73	А	0.82	19.2 ^{ns}
	AB	30	46.1	0.19	В	0.18	
	BB	13	5	0.08			
<i>CSN3</i> (n =156)	TT	132	132.9	0.85	Т	0.92	1.1 ^{ns}
	TC	24	22.1	0.15	С	0.08	

P-Values

Trait		duction	Milk Components ²					
Trait Factors	TMY (kg)	TDM (kg)	Fat%	SNF%	Protein%	Lactose%	Density, g\cm ²	
β-LG	0.175	0.134	0.047	< 0.0001	0.046	0.03	0.002	
PRL	0.034	0.011	0.761	0.001	0.035	0.05	0.005	
CSN3	0.812	0.275	0.172	0.048	0.424	0.104	0.541	
Sire	<.0001	<.0001	<.0001	< 0.0001	0.019	0.035	0.0004	
Parity	0.004	0.005	0.056	0.412	0.389	0.266	0.665	
Year	0.003	0.002						
β-LG×PRL	0.039	0.031	0.001	< 0.0001	0.008	0.035	0.05	
β -LG×CSN3	0.874	0.221	0.417	0.899	0.784	0.949	0.496	
PRL×CSN3	0.177	0.104	0.002	0.02	0.228	0.115	0.767	
Dam weight at lambing	0.299	0.009						

Table Effect of Beta lactoglobuline (β-LG), Prlactin (PRL), and Kappa casein(CSN3) genotypes and significant interaction effects on milk production traits inAwassi sheep.

Gene	Genotype	Ν	Trait Least Squa	uare Means (± SE)	
Gene	Genotype	1	TMY (Kg)	TDM (Kg)	
	AA	51	100.4 ± 13.4	0.718 ± 0.10	
β-LG	AB	145	72.2 ± 15.7	0.606 ± 0.10	
	BB	96	93.2 ± 12.6	0.801 ± 0.10	
	AA	197	102.4 ± 9.86^{a}	0.814 ± 0.08 a	
PRL	AB	68	71.4 ± 12.6 b	0.540 ± 0.10 b	
	BB	27	$92.0\pm14.7~^{ab}$	0.770 ± 0.11 $^{\rm a}$	
CSN3	TT	240	90.1 ± 11.8	0.762 ± 0.09	
	TC	52	87.1 ± 11.5	0.654 ± 0.09	
	AAAA	29	$96.5\pm13.0\ ^{b}$	$0.780\pm0.10~^{ab}$	
	AAAB	12	65.0 ± 23.0 bc	0.359 ± 0.17 $^{\rm c}$	
	AABB	10	139.7 ± 25.2^{a}	1.02 ± 0.19 a	
β-LG×PRL	ABAA	106	$99.2\pm17.3~^{ab}$	$0.834\pm0.13~^{ab}$	
×Р	ABAB	31	$72.6 \pm 19.3 \text{ bc}$	0.578 ± 0.15 c	
ΓC	ABBB	8	$44.9\pm18.4~^{c}$	0.406 ± 0.14 c	
β-	BBAA	62	$111.6\pm11.1~^{\rm ab}$	$0.829\pm0.08~^{ab}$	
	BBAB	25	$76.8\pm15.4~^{bc}$	$0.684\pm0.12~^{b}$	
	BBBB	9	$91.3\pm27.6~^{ab}$	$0.891\pm0.21~^{ab}$	

Least Square Means of Milk components and the genes effects

Carra	Gen	NT		Traits Least Square Means (± SE)				
Gene	otyp e	Ν	Fat %	SNF %	Protein %	Lactose %	Density, g\cm ²	
	AA	112	6.63 ± 0.29 ^a	9.50 ± 0.15 ^b	3.90 ± 0.10 ^b	4.99 ± 0.14 ^b	33.0 ± 0.61 ^b	
β-LG	AB	376	5.31 ± 0.43 ^b	9.39 ± 0.22 ^b	3.66 ± 0.14 ^b	4.88 ± 0.20 ^b	$34.1\pm0.87~^{ab}$	
	BB	277	6.30 ± 0.35^{a}	10.4 ± 0.18 ª	4.13 ± 0.12 ª	5.39 ± 0.16 ^a	35.4 ± 0.71 ^a	
	AA	554	6.13 ± 0.17	9.86 ± 0.08 ^a	4.00 ± 0.06^{a}	5.02 ± 0.08 ^b	34.2 ± 0.34 ^a	
PRL	AB	159	5.96 ± 0.19	9.44 ± 0.10 ^b	3.79 ± 0.06 ^b	4.90 ± 0.09 ^b	$32.9\pm0.40~^{\mathrm{b}}$	
	BB	52	$\begin{array}{r} \textbf{6.15} \pm \\ \textbf{0.38} \end{array}$	9.96 ± 0.19 ^a	3.91 ± 0.13 ^{ab}	5.35 ± 0.18 ^a	35.3 ± 0.77 ^a	
V3	TT	624	6.49 ± 1.45	10.1 ± 0.19 ^a	3.98 ± 0.12	5.32 ± 0.17	34.5 ± 0.75	
CSN3	TC	141	5.67 ± 1.05	9.45 ± 0.15 ^b	3.82 ± 0.10	4.86 ± 0.14	33.7 ± 0.62	

C	Canalana	NT	Traits Least Square Means (± SE)					
Ger	ne Genotype	N	Fat %	SNF %	Protein %	Lactose %	Density, g\cm ²	
	AAAA	56	6.38 ± 0.34	9.77 ± 0.17 ^b	4.05 ± 0.11 ^b	4.87 ± 0.16 ^c	33.6 ± 0.70 ^b	
	AAAB	29	5.56 ± 0.45 ^c	8.63 ± 0.21 ^c	3.47 ± 0.14 ^c	4.46 ± 0.19 ^d	30.2 ± 0.84 ^c	
	AABB	27	7.95 ± 0.82 ^a	10.1 ± 0.42 b	4.18 ± 0.28 ^{ab}	5.66 ± 0.39 ^{ab}	35.2 ± 1.71 ^{ab}	
RL	ABAA	284	5.97 ± 0.24 ^c	$9.87\pm0.11~^{b}$	3.99 ± 0.08 ^b	5.06 ± 0.10 ^{bc}	$34.6\pm0.46~^{\rm b}$	
β-LGxPRL	ABAB	78	6.67 ± 0.30 ^b	$9.97\pm0.15~^{\rm b}$	$3.97\pm0.10~^{\rm b}$	$5.24 \pm 0.14 \ ^{\rm b}$	$34.5\pm0.61~^{\rm b}$	
01-	ABBB	14	3.28 ± 1.11 ^d	8.33 ± 0.57 ^c	3.02 ± 0.38 ^c	$4.35\pm0.50~^{cd}$	33.3 ± 2.30 bc	
6	BBAA	214	6.03 ± 0.18 ^c	$9.92\pm0.09~^{b}$	3.96 ± 0.06 ^b	$5.12\pm0.08~^{bc}$	$34.6\pm0.36~^{\rm b}$	
	BBAB	52	5.63 ± 0.38 ^c	9.72 ± 0.15 ^b	3.91 ± 0.10 ^b	4.99 ± 0.14 ^{bc}	$34.1\pm0.59~^{\rm b}$	
	BBBB	11	7.23 ± 1.03 ab	11.5 ± 0.52 ^a	4.53 ± 0.35 a	6.05 ± 0.48 ^a	37.4 ± 2.10 ^a	
	AATT	478	6.13 ± 0.18 ^b	$9.89\pm0.08~^{b}$	3.95 ± 0.05	5.11 ± 0.07	34.5 ± 0.32	
23	AATC	75	$6.12\pm0.27~^{\rm b}$	9.82 ± 0.13 ^{bc}	$\textbf{4.05} \pm \textbf{0.09}$	$\textbf{4.93} \pm \textbf{0.12}$	$\textbf{33.9} \pm \textbf{0.54}$	
CSN	ABTT	122	5.32 ± 0.22 ^c	9.29 ± 0.11 ^d	$\textbf{3.68} \pm \textbf{0.46}$	$\textbf{4.83} \pm \textbf{0.17}$	$\textbf{32.9} \pm \textbf{1.02}$	
PRLxCSN3	ABTC	37	6.59 ± 0.32 ^b	9.59 ± 0.16 ^c	$\textbf{3.89} \pm \textbf{0.11}$	4.68 ± 0.15	$\textbf{32.9} \pm \textbf{1.45}$	
PF	BBTT	23	8.02 ± 1.11 ^a	11.0 ± 0.57 ^a	$\textbf{4.31} \pm \textbf{0.38}$	6.03 ± 1.12	$\textbf{36.2} \pm \textbf{2.30}$	
	BBTC	29	$4.29\pm0.75~^{\rm d}$	$8.93\pm0.38^{\rm ~d}$	3.51 ± 0.62	4.68 ± 0.35	34.5 ± 1.55	

Conclusion

The findings presented in this paper indicated that

β-LG gene polymorphisms are not associated with milk production traits, but rather with varying fat%, protein%, SNF%, lactose%, and even density.

- PRL gene polymorphism was associated positively with SNF%, lactose% and milk density but not fat% or protein%. Furthermore, there was no CSN3 variants effects on milk production or composition traits in Awassi ewes.
- The interesting portion of this project was the combined genotype effect on milk production and composition
- where we showed a significant impact of the interaction of *B-LG^xPRL* genotypes on milk production and of PRLx*CSN3* on fat% and SNF%,

Thanks for listening

🔮 animals	Title / Keyword Author / Affiliation	Journal Article Type	Animals all	▼ ▼	Advanced	Search
Volume 9, Issue 6	Open Access Article					
animals		eraction of β-Lac Genes on Milk P eep	-		•	2
6	Khaleel Jawasreh ^{1,*} ⊠, A	Ahmad AI Amareen ² and Pau	line Aad ³ 💿			
	 ² Livestock Directorate, N ³ Department of Sciences 	roduction, Jordan University of ational Agriculture Research ce , Notre Dame University Louaiz ondence should be addressed.	enter (NARC), Alba	qa'a 1938	1, Jordan	D, Jordan
Orangutans' Comprehension of Zoo Keepers' Communicative Signals		ttps://doi.org/10.3390/ani90603 Revised: 18.June 2019 / Accent				