Optimization of genomic diversity in a gene bank for Dutch cattle breeds

A.E. van Breukelen, H.P. Doekes & J.K. Oldenbroek

Wageningen University and Research

Centre for Genetic Resources (CGN)

Introduction: gene banks

- Ex situ conservation of genetic diversity
- Three main reasons:
 - 1. Market or environmental changes
 - 2. Safeguard
 - 3. Opportunities for research
- Prioritization may be needed because of limited resources

Introduction: Dutch cattle

- Dutch cattle population in 1975:
 - 70% Dutch Friesian (DF)
 - 28% Dutch Red and White (MRY)
 - 2% Groningen White Headed (GWH)
- Nowadays 98% Holstein Friesian

Possible loss of genetic diversity in small populations

Introduction: Dutch gene bank

- Genetic material from all native Dutch breeds stored in a national gene bank
- Maximization of genetic diversity based on pedigree data
- Recently, all bulls genotyped

Characterize and optimize genomic diversity in the Dutch gene bank for native cattle

Material

All bulls genotyped at 50k

Year of birth

Methods: characterization

- Genomic similarity between all bulls (IBS)
- Neighbour-joining tree based on genetic distance (1-IBS)
- Unique diversity; method by Eding et al. (2002)

	Breed 1	Breed 2	Breed 3	Breed
Breed 1				
Breed 2				
Breed 3				
Breed				

Results: neighbour-joining tree

- Dutch Friesian Red (DFR) highly similar to Dutch Friesian (DF)
- Deep Red (DR) and Improved Red and White (IRW) founded by lines within MRY

Results: unique diversity

 Little diversity unique to a single breed

 Improved Red and White (IRW) bulls most unique, in the past some crossing with Belgian Blue cattle

	Unique
	diversity (%)
DB	0.093
DF	0.023
DFR	0.015
DR	0.033
GWH	0.099
IRW	0.199
MRY	0.016

Methods: optimization

Optimal contribution selection by Gencont

Reducing mean genomic similarity

Results: optimization across all breeds

- In total 72 out of 718 bulls with optimal contribution higher than zero
- Older bulls were selected as well, across and within breeds

Birthyear	Contribution
1960-1969	8%
1970-1979	7%
1980-1989	22%
1990-1999	22%
2000-2009	21%
2010-2019	20%

Results: optimization within breeds

Breed	Current (%)	Optimal (%)	Difference	ce (%)
DB	69.1	68.0		-1.13
DF	68.2	66.4		-1.79
DFR	69.6	68.6		-1
DR	68.1	67.9		-0.28
GWH	71.1	69.4		-1.62
IRW	67.5	66.8		-0.71
MRY	68.7	67.1		-1.55

Conclusions

Little diversity is unique to a single breed in the gene bank

Old bulls contribute considerably to diversity

In retrospect, we could reduce the mean similarity within each breed with 0.28%-1.79% using optimal contributions

Thank you for your attention!

