

Centre wallon de Recherches agronomiques

Performances and greenhouse gas emissions of alternative beef production schemes under organic farming

- M. Mathot
- A. Mertens
- D. Stilmant
- V. Decruyenaere

Introduction

Fattening males in the suckler cow farms:

- environment: cattle movement across region or countries, valorisation of grassland resources (45 % agricultural land)
- social: local production,
- economic: diversification, valuable products

but: few co-products available and targetting autonomy.

	Castration	Grass in diet	Daily live weight gain	
Bulls	no	-	+	Social acceptation
Steers	yes	+	-	Local resources
(INRA, 2018)		-		

Aim

Comparision of bull and steer fattening scheme under organic farming using local resources and breed (DPBB)

- Cattle performances
- Greenhouse gas emissions (enteric, manure and feed production¹)
- (Economics)

Methodology

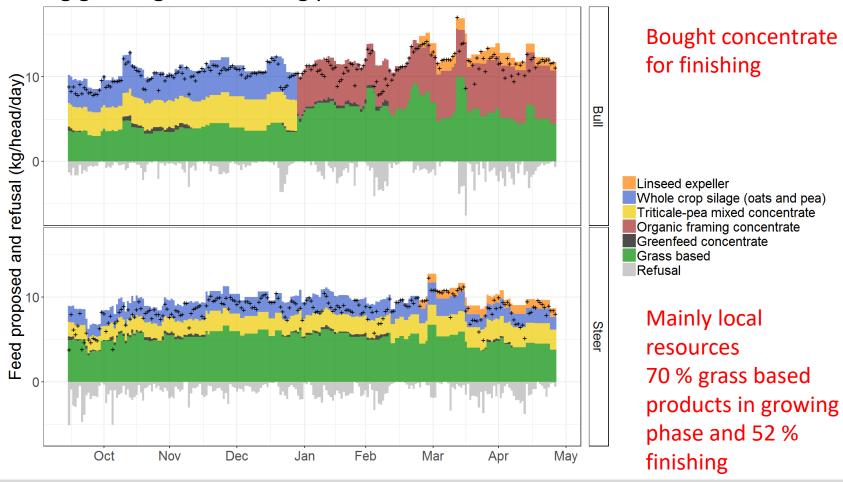
	Changing phase	criteria: Se	ason Wei	•	Weight, fattening state and age	
		Pasture	Growing	Finishing	Slaughter	
Dual purpose	Steer (n=2)	Grass	Diet 1	Diet 3	_	
Belgian Blue (DPBB)	Bull (n=2)	Grass	Diet 2	Diet 4		
Limousin (LIM)	Steer (n=2)	Grass	Diet 1	Diet 3	Same diet for the	
	Bull (n=2)	Grass	Diet 2	Diet 4	two breeds	

- Scheme repeated three times
- Limousin to compare DPBB breed performances to a reference

- Rearing in barn
- Adapation to greenfeed
- All young cattles of a given repetition alltogether

- Animals grazing alltogether
- No information about the intake level

- Growing and finishing
- Grouped by treatment due to cattle behaviour (steers vs bulls)
- Daily intake were quantified
- Manure at barn and store (n=2), (Mathot et al., 2016)


CH₄, N₂O, NH₃

 $=> CO_2eq$

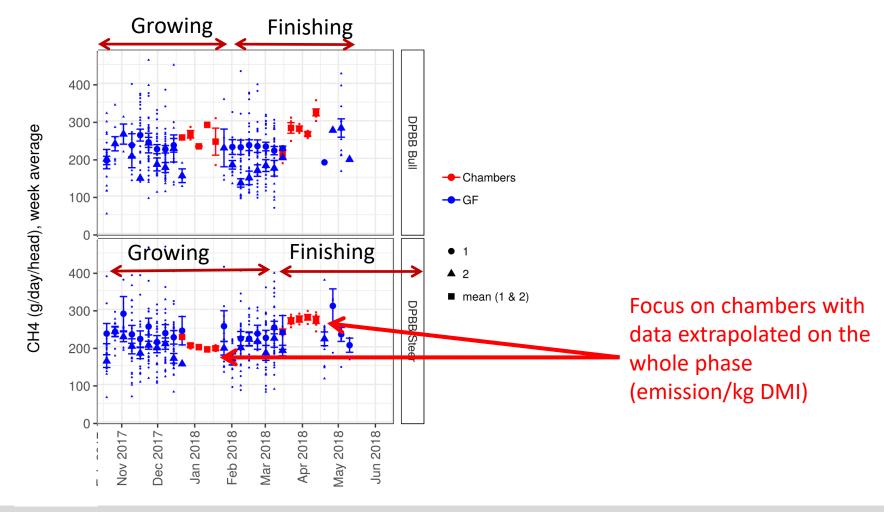
Methodology

Lower performances potential for steers => more grass and less rich diets during growing and finishing phases.

Diets

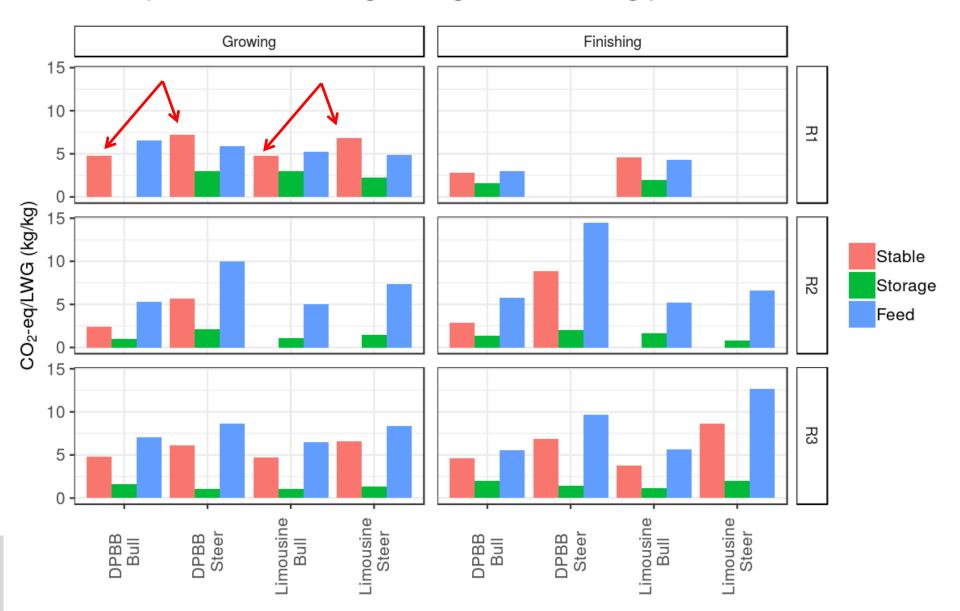
Stage	State	VEVI	DVE	OEB	Crude prot	NDF	ADF	
		g/kg dmi						
Growing	Bull	916±35	62±10	16±4	149±4	393±27	241±11	
	Steer	863±22	61±6	16±3	145±2	420±3	261±0	
Finishing	Bull	1032±10	75±1	33±3	176±3	305±14	195±6	
	Steer	921±9	76±1	26±1	170±3	385±5	244±3	

Perfomances

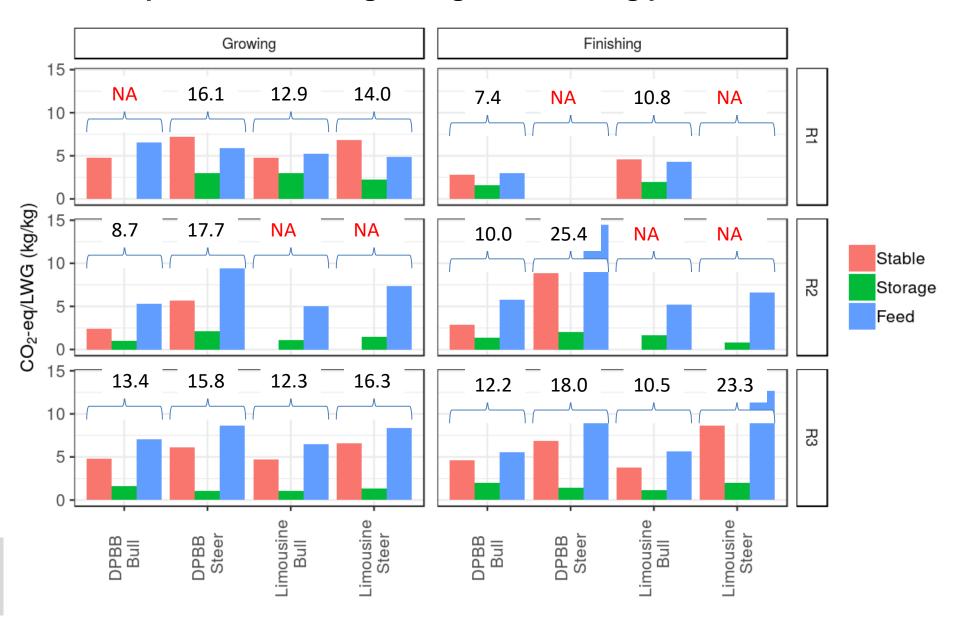

- No evidence of breed effect
- Differences between bulls and steers

Stage	State	Age at start	Stage duration	Weight at start of the phase	Dlwg	CI	CI Grass
		(month)	(month)	(kg/head)	(kg/d/head)	(kg DMI/kg lwg)	(kg DMI/kg lwg)
Growing	Bull	19±2	2.7±0.6 ^a	504±33	1.32±0.22 ^a	8.3±1.4 ^a	4.4±2.3 ^a
	Steer	19±3	4.7±0.7 ^b	477±39	0.91±0.12 ^b	11±1.3 ^b	7.9±2.1 ^b
Finishing	Bull	22±2ª	3.6±0.3	614±23	1.48±0.2 ^a	7.6±1 ^a	4±0.6 ^a
	Steer	24±2 ^b	3.2±1.2	602±46	1±0.35 ^b	11.3±3 ^b	5.8±1.6 ^b

Stage	State	Age	Weight	Dlwg	
		(month)	(kg/head)	(kg/d/head)	
Slaughter	Bull	25±2 ^a	774±19 ^a	1.40 ^a	
	Steer	27±3 ^b	690±53 ^b	0.9 ^b	



GHG emissions



Emissions in CO₂ eq per kg lwg as measured in chambers extrapolated to whole growing and fattening phases

Emissions in CO₂ eq per kg lwg as measured in chambers extrapolated to whole growing and fattening phases

- Higher GHG emissions from steers (G: 16.0 (0.7), F: 22.2 (2.2)) compared to bull (G: 11.8 (1.5), F: 10.9 (0.7)) in kg CO_2 eq per kg of liveweight produced.
- How much C should sequestrate the grassland used to produce the grass based products (grass silage), ingested in higher amount by steers, to compensate the differences observed?

	n	Ste kg CO₂eq/ kg lwg; mean (sem)	er-Bull ; p (t.test=0)) %	compensa emissior	stration in gras te the differer ns (yield of 7 t a/year; mean	nce in GHG DM/ha)
Growing	4	4.1 (1.4)	0.05	41%		2.0 (0.5)	
Finishing	3	11.3 (2.0)	0.10	108%		12.8 (2.6)	

Conculsion

- Trend in more GHG emissions for steers compared to bulls per kg lwg, whatever the breed.
- Limitations and perspective:
 - Repetition
 - Accuracy of feed production impact
 - Include animal emissions when grazing
 - CH₄ measures with Greenfeed to check consistency
- Other concern:
 - Autonomy and Food/Feed competition (C. Battheu, boa p.144 and 200)
 - Ammonia emissions
 - Biodiversity
- Other production scheme
 - Rose veal (A. Mertens, boa p. 640)

