

LIFE BEEF CARBON

Effectiveness of the mitigation strategies

CREA Centre for Animal Production and Aquaculture Carè S., Pirlo G., Bardelli T., Migliorati L. <u>sara.care@crea.gov.it</u>

70th Annual Meeting EAAP 2019 Ghent, Belgium 28 August 2019

4 countries

LIFE BEEF CARBON project

Project leader: Institute de l'Elevage

UE team:

2000 beef farms

To reduce the beef carbon footprint by 15% in 10 years; To promote innovative livestock farming systems ensuring the technical, economic, environmental and social sustainability of beef farms; To contribute to the implementation of European climate change legislation.

Materials and Methods

- 20 beef fattening farms in Piemonte and Veneto;
- beef farms' mean size: 66±66 ha;
- beef genetic types: Blond d' Aquitaine, Charolaise, Limousine, French cross-bred;
- mineral fertilisers: 109±52 kg N/ha;
- housing systems: confined closed or open barns with multiple pens, on fully slatted floor or deep litter;
 diet: TMR composed of maize, hay, straw, soybean and concentrate onor-off farm.

Assessments of GHG emissions

CAP'2ER (IDELE, France)

Impact categories

- ➢ Global warming (kg CO₂eq),
- \blacktriangleright Acidification (kg SO₂ eq),
- \succ Eutrophication (kg PO₄ eq),
- Energy consumption (MJ),
- Biodiversity (ha eq),
- \succ Carbon sequestration (T CO₂ eq).

Statistical analysis:

- Wilcoxon Signed Ranks Test;
- Generalized linear model (GLM);
- Nonmetric multidimensional scaling (NMDS).

All statistical analyses were performed using R, software version 3.4.

Beef carbon action plan in Italy

Animal performance and nutrition

Increase ADG; use of feed additives (coniugated linoleic acid, CLA); smart reduction of CP content of diets; increase fraction of concentrate in diets; substitution of high-energy concentrate diet with high-forage diet; phase feeding.

Manager and an and and	Partial or total replacement of deep litter with fully				
wanure management and	slatted floor; fast incorporation (e.g. injection).				
application					

N fertilizers reduction,
energy and carbon
sequestration

Smart use of chemical fertilizers; optimize soil N level; photovoltaic panels and anaerobic digestion; minimum or no till.

Crea Growth performance and FCR of the beef farms

Parameter	Unit	Before (mean ± SD)	After (mean ± SD)	Ρ
Herd size	number	468±334	521±352	*
Initial body weight	kg	332±68	335±70	NS
Final body weight	kg	611±66	616±75	NS
Average daily gain	kg 1.22±0.21		1.26±0.22	*
Initial age	month	10±2.38	10±2.36	NS
Final age	month	18±1.05	18±1.20	NS
Length of fattening period	days 236±75		229±68	NS
Total live weight produced	T/year	213±159	259±181	*
Feed conversion ratio (FCR)	kg feed consumed (DM)/kgLWG	7.18±2.6	6.80±1.9	NS

*= P≤0.05 NS= not significant

ea Results of GHG emissions

The environmental impact due to the calf and the mother is not included.

environmental impact

Generalized linear model (GLM)

e l'analisi dell'economia agraria

Relationship between GW and FCR

Relationship between GW and FCR and ADG

Before: GW= (FCR*0.485)+(ADG*0.932)+4.077

After: GW= (FCR*0.341)+[ADG*(-1.403)]+7.473

R²= 0.26 p value= 0.08

R²= 0.22 p value= 0.14

Interaction between farm characteristics and

environmental impact

Nonmetric multidimensional scaling (NMDS)

	Parameter	NMDS1	NMDS2	r ²	Pr(>r)
	kgN.ha	-0.18458	-0.98282	0.2164	*
	FCR	-0.68217	0.73119	0.2317	*
	BWI	-0.33738	-0.94137	0.2891	**
	BWF	0.05771	-0.99833	0.3301	**
	ADG	0.29827	-0.95448	0.2926	**
3	IA	-0.17411	-0.98473	0.1588	*

P<0,05=*, P<0,01=***; P<0,01=***

e l'analisi dell'economia agraria

- There is no clear separation of farms before and after the application of the mitigation strategies;
- Growth performance, mineral fertilizer, feed conversion ratio, initial and final age have a significant impact on the emissions reduction as conseguences of application of mitigation strategies.

Effectiveness of the mitigation strategies

CF=cattle feeding; AW=animal welfare; CF/MM=cattle feeding/manure management; AW/RE=animal welfare/renewable energy; CF/HP=cattle feeding/herd performance; RE= renewable energy; AW/HP= animal welfare/herd performance; MM= manure management; RE/MM= renewable energy/manure management; CF/RE= cattle feeding/renewable energy; CS= carbon sequestration; RE/AW/CF/HP= renevable energy/animal welfare/cattle feeding/herd performance; RE/AW= renevable energy/animal welfare.

Conclusions

It is possible to reduce GHG emissions from specialized fattening beef farms, by adopting the strategies that were chosen by the farmers;

Feed conversion ratio is a good indicator of CF, but it explains only a small part of the variability of this parameter because other strategies (for example substitution of chemical fertilizers, anaerobic digestion) do not influence feed efficiency;

Farms that have reached values of beef CF reduction close to or above 15% have adopted more than one mitigation strategy.

Thanks to farmers who kindly shared data