70th Annual Meeting of the European Federation of Animal Science, City of Ghent (Belgium), 26 - 30 Aug 2019

Efficient waterlines cleaning protocols in post-weaning rooms: a new way to reduce antibiotic consumption?

Mily LEBLANC-MARIDOR¹ Sophie BRILLAND², Catherine BELLOC¹, Patrick GAMBADE³

> ¹BIOEPAR, INRA, Oniris, 44307 Nantes, France ²CEVA Santé Animale, 53 000 Laval, France ³UNIVET Santé Elevage, 22600 Loudéac, Brittany, France.

• Drinking water

an essential nutrient for animals

- Solvent and reagent
- Transport vehicle
- Osmotic balance
- Thermal exchanges

Correct and safe water supply,

in terms of both quality and quantity, allows optimization of animal performances while maintening their health

 Performances can decrease and/or diseases may appear when the physiological animal's requirements are not satisfied

Gogny and Debrueker, 1999

• Health disorders,

like digestive disorders, can also be linked with a poor water quality

To guarantee

the best quality of water

from the source to the animal troughs

Formation of biofilms

in distribution systems

- Persistent reservoir for **potentially pathogenic bacteria**
- May clog waterpipe and filter thus restrict water flow mming, 2011
- Make disinfection difficult
- Can decrease efficacy of oral treatments

Chazarenc, 2010

Fairchild and Ritz, 2009

• On field, waterlines cleaning protocols appear more frequent in poultry farms than in pig farms...

Are poultry farmers more aware of water quality than pig producers ?

A previous survey underlined that the control of water management is more established in poultry farming compare to pig industry

⇒ The main differences concern

- The monitoring of water consumption
- The waterpipe maintenance (systematic cleaning)

70th EAAP Annual Meeting

POSTER 37.18

Water quality: differences of perception and management between poultry and pig producers

C.BELLOC¹, S.BRILLAND², P.GAMBADE³, M.LEBLANC-MARIDOR¹

¹BIOEPAR, INRA, 44 307 Nantes, France ²CEVA Santé Animale, 53000 Laval, France ³UNIVET Santé Elevage, 22600 Loudéac, Brittany, France

Critical management period

• Social, environmental and nutritional changes

Digestive disorders frequent

+/- use of antibiotics

The improvement of water management could help to prevent digestive disorders in weaners and/or to reduce antibiotic consumption during this period

Aim of the study

To evaluate in pig farms during the weaning period the effects of different mechanical and chemical waterlines cleaning protocols, similar to those used in poultry farms

- Selection of farms
 - → Inclusion's criteria (in post-weaning)
 - Recurrent problem of digestive disorders
 - Two post-weaning rooms
 - Specific system for waterlines

Dual water circuit

with a treated water circuit connected to a metering pump and a clean water circuit

- Selection of farms
 - ➔ three farrow-to-finish farms
 - Located in the West Region in France
 - From one production company
- Experimental design
 - → two waterlines cleaning protocols set up
 - at the same time in two post-weaning rooms
 - the day before the entrance of the piglets

• Waterlines cleaning protocols (used in poultry farms)

Protocole 1: Post-weaning room 1	Protocole 2: Post-weaning room 2				
Mechanical action: line flushing					
Alkaline detergent	Enzymatic detergent				
(Sanolin [®] : potassium hydroxide)	(Sanozym [®] : protease, amylase)				
45 minutes at 1%	45 minutes at 1%				
Mechanical action	on: line flushing				
Ac	id				
(Sanocidex [®] : peracetic acid 5%, hydrogen peroxide 14.5%)					
1 hour at 2%					
Mechanical action: line flushing					

- Procedure of line flushing (4 steps)
 - → Mechanical action = water under pressure!
 - 1. Adjusting the pressure reducer to reach 3 bars
 - 2. Opening the drain valve to purge one volume of water
 - 3. Closing the drain valve
 - 4. Opening all the water troughs to purge one volume of water

- Mechanical action: flushing water under pressure
 - → Necessary to pull off the biofilm
 - Increase the efficiency of disinfection

Prior to set up the experiment :

- A terminal drain valve has been added at the end of each water pipeline of each post-weaning room
- The pressure regulator of the waterline system was set at 3 bars in order to have an efficient mechanical action

- Sampling and bacteriological analyses
 - ➔ To follow the bacteriological water quality
 - Enumeration of mesophilic/aerobic flora
 - 500mL sterilized collection bottles

Total flora at 37°C and 22°C (CFU/ml)				
Water analysis (CFU/ml)				
Before the	Water at watering place (troughs)			
metering	Before After Afte			
pump	protocol	mechanical action	protocol	

- Sampling and bacteriological analyses
 - \rightarrow To evaluate the cleanliness of the pipes
 - Enumeration of mesophilic/aerobic flora
 - Cotton swabs (or sterile nylon swabs)

Total flora	at 37°C and	d 22°C	(CFU/ml)
--------------------	-------------	--------	----------

Cleanliness of the pipelines (CFU/swab)

Cotton swabs in the water pipes of the troughs

Before protocol

After protocol

• Initial water quality (before the metering pump)

Water quality ?	Total flora at 37°C (CFU/mI)	Total flora at 22°C (CFU/ml)	
Farm A	>100	77	
Farm B	<10	<10	
Farm C	10	16	

⇒ Recommendations of OIE for animal drinking water quality: 10 CFU/mL

• Water quality on the water line system ?

		Total flora at 37°C/22°C (CFU/ml)					
			Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)				
		metering pump	Before	After mechanical action	After protocol		
			256/549	10/116	20/24		
Farm A	PW2	>100/77	312/95	412/456	9/5		
D	PW1	10/10	17 000/27 000	63 000/380 000	1 000/3 000		
Farm B PV	PW2	<10/<10	13 000/110 000	340 000/780 000	800/160		
_	PW1	10/10	6 000/6 100	410/450	110/92		
Farm C	PW2	10/16	60 000/150 000	180/990	7/3		

• Water quality on the water line system ?

		Total flora at 37°C/22°C (CFU/ml)				
		Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)			
		metering pump	Before protocol	After mechanical action	After protocol	
F.a	PW1	>100/77	356/548	19/116	29/34	
Farm A	PW2		312/95	412/456	9/5	
	PW1	<10/<10	17 000/27 000	63 000/380 000	1 000/3 000	
Farm B	PW2	<10/<10	13 000/110 000	340 000/780 000	800/1 <u>60</u>	
	PW1	10/10	6 000/6 100	410/450	110/92	
Farm C	PW2	10/16	60 000/150 000	180/990	7/3	

• Water quality on the water line system ?

		Total flora at 37°C/22°C (CFU/ml)				
		Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)			
		metering pump	Before protocol	After mechanical action	After protocol	
	PW1	>100/77	356/548	19/116	29/34	
Farm A	PW2		312/95	412/456	9/5	
	PW1	(10/(10	17 000/27 000	63 000/380 000	1 000/3 000	
Farm B	PW2	<10/<10	13 000/110 000	340 000/780 000	800/1 <mark>60</mark>	
	PW1	10/10	6 000/6 100	410/450	110/92	
rarm C	PW2	10/10	60 000/150 000	180/990	7/3	

• Water quality on the water line system ?

		Total flora at 37°C/22°C (CFU/ml)				
		Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)			
		metering pump	Before protocol	After mechanical action	After protocol	
Earm A	PW1	>100/77	356/548	19/116	29/34	
rai ili A	PW2		312/95	412/456	9/5	
	PW1	<10/<10	17 000/27 000	63 000/380 000	1 000/3 000	
Farm B	PW2		13 000/110 000	340 000/780 000	800/160	
	PW1	10/10	6 000/6 100	410/450	110/92	
Farm C	PW2	10/16	60 000/150 000	180/990	7/3	

⇒ Bacterial concentrations in water increase along the pipeline

Potential effect of the mechanical action?

		Total flora at 37°C/22°C (CFU/ml)				
		Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)			
		metering pump	Before	After	After	
			protocol	mechanical action	protocol	
arm A	PW1	>100/77	356/548	19/116	29/34	
	PW2		312/95	412/456	9/5	
Form P	PW1	<10/<10	17 000/27 000	63 000/380 000	1 000/3 000	
Farm B	PW2	<10/<10	13 000/110 000	340 000/780 000	800/160	
	PW1	10/16	6 000/6 100	410/450	110/92	
rannic	PW2	10/10	60 000/150 000	180/990	7/3	

• Potential effect of the mechanical action?

		Total flora at 37°C/22°C (CFU/ml)					
			Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)				
		metering pump	Before protocol	After mechanical action	After protocol		
Farm A	PW1 PW2	>100/77	356/548 312/95	19/116 412/456	29/34 9/5		
Farm B	PW1 PW2	<10/<10	17 000/27 000 13 000/110 000	63 000/380 000 340 000/780 000	1 000/3 000 800/160		
Farm C	PW1 PW2	10/16	6 000/6 100 60 000/150 000	410/450 180/990	110/92 7/3		

Bacterial concentration can increase after line flushing

• Efficiency of the protocols on water quality?

		Total flora at 37°C/22°C (CFU/ml)				
		Water analysis (CFU/ml)				
		Before the	Water at watering place (troughs)			
		metering pump	Before protocol	After mechanical action	After protocol	
_	PW1	>100/77	356/548	19/116	29/34	
Farm A	PW2		312/95	412/456	9/5	
	PW1	<10/<10	17 000/27 000	63 000/380 000	1 000/3 000	
Farm B	PW2		13 000/110 000	340 000/780 000	800/1 <u>60</u>	
	PW1	10/16	6 000/6 100	410/450	110/92	
rarm C	PW2	10/16	60 000/150 000	180/990	7/3	

• Efficiency of the protocols on water quality?

			Total flora at	37°C/22°C (CFU/ml)		
			Water analysis (CFU/ml)			
		Before the	Water at watering place (troughs)			
		metering pump	Before protocol	After mechanical action	After protocol	
_	PW1	>100/77	356/548	19/116	29/34	
Farm A	PW2		312/95	412/456	9/5	
	PW1	<10/<10	17 000/27 000	63 000/380 000	1 000/3 000	
Farm B	PW2	<10/<10	13 000/110 000	340 000/780 000	800/160	
_	PW1	10/10	6 000/6 100	410/450	110/92	
Farm C	PW2	10/16	60 000/150 000	180/990	7/3	

⇒ Both protocols reduced total flora, improved water quality

• Efficiency of the protocols to clean the pipes?

		Total flora at 37°C/22°C (CFU/ml)		
		Cleanliness of the pipelines (CFU/swab)		
		Cotton swabs in the water pipes of the troughs		
		Before protocol	After protocol	
Farm A	PW1	660/360	<100/<100	
	PW2	60/70	<100/<100	
Farm B	PW1	2 800/2 500	10/10	
	PW2	20 000/20 000	180/20	
Farm C	PW1	540 000/10 000	60/10	
	PW2	5 300/2 300	30/<10	

• Efficiency of the protocols to clean the pipes?

			Total flora at 37°C/22°C (CFU/ml) Cleanliness of the pipelines (CFU/swab)		
			Before protocol	After protocol	
				Farm A	PW1
	PW2	60/70	<100/<100		
	Forme D	PW1	2 800/2 500	10/10	
F	Farm B	PW2	20 000/20 000	180/20	
		PW1	540 000/10 000	60/10	
	Farm C	PW2	5 300/2 300	30/<10	

• Efficiency of the protocols to clean the pipes?

		Total flora at 37°C/22°C (CFU/ml)		
		Cleanliness of the pipelines (CFU/swab)		
		Cotton swabs in the water pipes of the troughs		
		Before protocol	After protocol	
Farm A	PW1	660/360	<100/<100	
	PW2	60/70	<100/<100	
Farm B	PW1	2 800/2 500	10/10	
	PW2	20 000/20 000	180/20	
Farm C	PW1	540 000/10 000	60/10	
	PW2	5 300/2 300	30/<10	

⇒ Both protocols improved cleanliness of pipes

Conclusions

This study confirmed that **waterlines cleaning protocols** used in poultry farms **can be transferred easily in post-weaning rooms**

⇒ The setting up of the protocols requires

- A drain valve and a pressure reducer (line flushing)
- The add of a metering pump (common now in farms)

By reducing water's total flora and the formation of biofilms, these waterlines cleaning protocols could be part of the health prevention measures

Perspectives

The **improvement of water management** could be also **used to reduce antibiotic consumption** especially during this sensitive period

- ⇒ It would be interesting
 - To measure the recontamination of water
 - To adapt protocols (frequency, type) mixing
 - optimization of water quality for animals
 - convenience for farmers
 - To study the potential impact on digestive disorders and/or reduction of antibiotics' use

Thank you for your attention

Efficient waterlines cleaning protocols in post-weaning rooms: a new way to reduce antibiotic consumption?

Comparison of the protocols

Evolution of the total flora in water samples

Protocol 2: Higher decrease of total flora in the waterline system

Other measures at the start of the study

	Farm A	Farm B	Farm C
Dureté (°F)	12,5	7	8,2
рН	4,75	5,14	7,75
POR (mV)	274	325	413

In bold: value above the standard reference for water quality for human consumption

- Three different biochemical profiles
- Really high level of Manganese

x5 to x170 the standard value recommended for human consumption