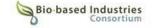


Evaluation of insect derived functional feed ingredients in poultry diets

Stefanie Verstringe, Geert Bruggeman & Leen Bastiaens

70th Annual Meeting of the European Federation of Animal Science Ghent, Belgium, August 28 2019



Outline

- InDirect: frame, objectives and expected results
- Insects and their derivatives: fractions and outcomes

Outline

- InDirect: frame, objectives and expected results
- Insects and their derivatives: fractions and outcomes

Fact sheet InDIRECT

Title:

Direct and indirect biorefinery technologies for conversion of organic side-streams into multiple marketable products

Acronym: InDIRECT

Project partners: 2 research partners; 7 industrial partners (5 SMEs)

Funding scheme: Research & Innovation Action

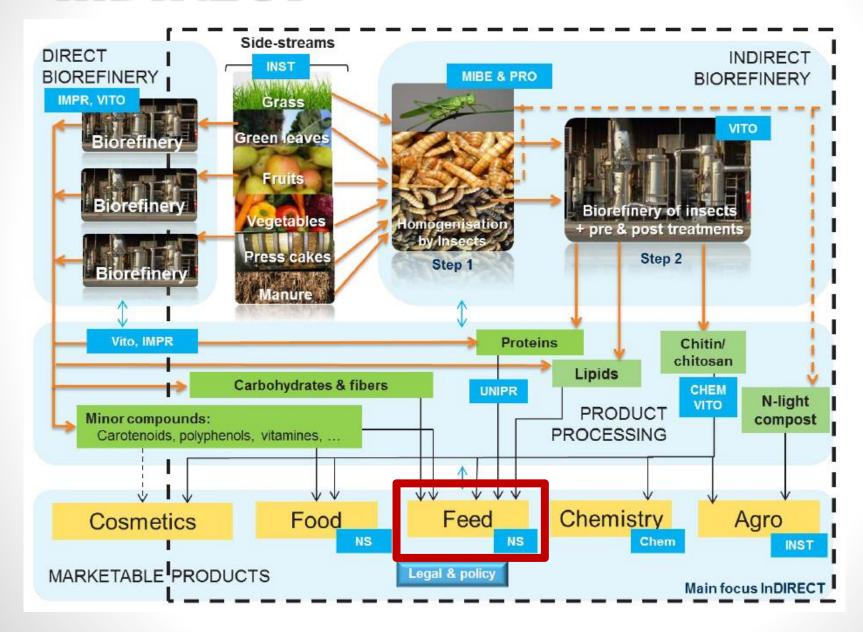
BBI.R10-2015-call on 'Innovative efficient biorefinery technologies'

Total project costs: 2,089,670 euro

Grant: 1,347,948 euro

Duration: 36 months (official start 1/11/2016)

Coordination: VITO (Belgium)



InDIRECT

Outline

- InDirect: frame, objectives and expected results
- Insects and their derivatives: fractions and outcomes

Samples for feed application

Insect type: Black soldier fly

100 kg reared on standard feed

Fraction generated lab scale tests (5- 100 g DW):

Mechanical/chemical approach:

- vito
- Lipid enriched fraction (74 % crude lipids)
- Protein enriched fraction 1 (48 % crude proteins)
- Protein enriched fraction 2 (71 % crude proteins)
- Chitosan
- Enzymatic approach:
 - Peptides (about 50 % crude proteins)

Selection to be made for animal trial

Step 1: tests with 2-100 g DW extract

- Bioactive properties
- Git simulation test (in vitro test)

Step 2: upscaling (> 10 kg DW fractions) → animal tests

Step 1: tests with 2-100 g DW extract

- Bioactive properties
- Git simulation test (in vitro test)

Step 2: upscaling (> 10 kg DW fractions) → animal tests

Results lab scale trials – bioactive properties

Fraction	Antimicrobial		Agglutination	Prebiotic power	
	Kill of E. coli K 88 (%)	Kill of S. Suis (%)	potential	Carbon	Nitrogen
Lipid enriched	0	86	-	2	2
Protein enriched 1	80	0	-	2	2
Protein enriched 2	26	35	potential	2	2
Chitosan	29	52	Potential	1	3
Peptides	30-64	0	Potential	2	2

Escherichia coli K88 Streptococcus suis 1 = low prebiotic power

2 = moderate prebiotic power

3 = Prebiotic power

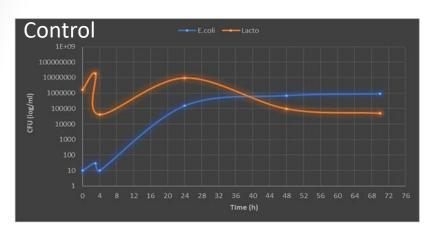
Selected for git simulation test (in vitro test) based on:

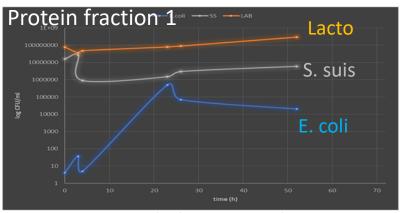
- Bioactive properties &
- upscaling production to > 10 kg DW

Step 1: tests with 2-100 g DW extract

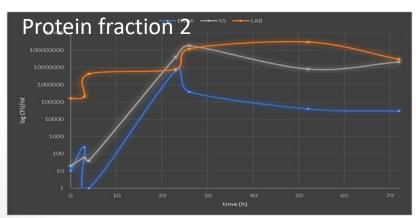
- Bioactive properties
- Git simulation test (in vitro test)

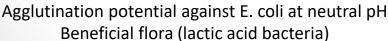
Step 2: upscaling (> 10 kg DW fractions) → animal tests

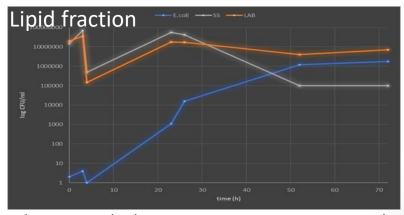




InDIRECT


In vitro git simulation trials





Antimicrobial against E. coli;
Beneficial flora (lactic acid bacteria)

High antimicrobial activity against S. Suis; not E. coli Beneficial flora (lactic acid bacteria)

Bioactivity properties confirmed!

Step 1: tests with 2-100 g DW extract

- Bioactive properties
- Git simulation test (in vitro test)

Step 2: **upscaling** (> 10 kg DW fractions) → animal tests

Samples for feed application

Insect type: Black soldier fly

Fraction generated for animal trial:

- Mechanical/chemical approach (upscaled procedure):
 - Lipid enriched fraction (90 % crude lipids)
 - Protein enriched fraction 1 (45 % crude proteins)
 - Protein enriched fraction 2 (49 % crude proteins)

Frozen lipid fraction

Homogenized protein rich fraction

→ packed in 1 kg bags

Animal trial preparation

Feed preparation

4 treatments:

Feed production @ site

- A: NC (conventional feed)
- B: NC + InDIRECT component 1: BSF lipid enriched fraction
- C: NC + InDIRECT component 2: BSF protein enriched fraction 1
- D: NC + InDIRECT component 2: BSF protein enriched fraction 2

Monitoring:

Animal trial Infrastructure

InDIRECT consortium

Coordinator: leen.bastiaens@vito.be

www.BBI-indirect.eu

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 720715.

